• 제목/요약/키워드: Contact damage

검색결과 679건 처리시간 0.024초

피로한도 이하에서 발생하는 압입축의 접촉손상 특성 (Characterization of Contact Surface Damage in a Press-fitted Shaft below the Fretting Fatigue Limit)

  • 이동형;권석진;함영삼;유원희
    • 한국정밀공학회지
    • /
    • 제27권8호
    • /
    • pp.42-47
    • /
    • 2010
  • In this paper, the characteristics of contact surface damage due to fretting in a press-fitted shaft below the fretting fatigue limit are proposed by experimental methods. A series of fatigue tests and interrupted fatigue tests of small scale press-fitted specimen were carried out by using rotating bending fatigue test machine. Macroscopic and microscopic characteristics were examined using scanning electron microscope (SEM), optical microscope or profilometer. It is found that fretting fatigue cracks were initiated even under the fretting fatigue limit on the press-fitted shafts by fretting damage. The fatigue cracks of press-fitted shafts were initiated from the edge of contact surface and propagated inward in a semi-elliptical shape. Furthermore, the fretting wear rates at the contact edge are increased rapidly at the initial stage of total fatigue life. After steep increasing, the increase of wear rate is nearly constant under the load condition below the fretting fatigue limit. It is thus suggested that the fretting wear must be considered on the fatigue life evaluation because the fatigue crack nucleation and propagation process is strongly related to the evolution of surface profile by fretting wear in the press-fitted structures.

철도차량 차륜의 기계적 특성 및 잔류응력평가 (Evaluation of Mechanical Characteristic and Residual Stress for Railway Wheel)

  • 서정원;권석진;이동형;전홍규;박찬경
    • 한국정밀공학회지
    • /
    • 제31권9호
    • /
    • pp.783-790
    • /
    • 2014
  • Railway wheels and axles are the most critical parts of the railway rolling stock. The wheel carry axle loads and guide the vehicles on the track. Therefore, the contact surface of wheel are subjected to wear and fatigue process. The wheel damage can be divided into three types; wear, contact fatigue failure and thermal crack due to braking. Therefore, in the contact surface between the wheel and the rail, the materials are heat treated to have a specific hardness. The manufacturing quality of the wheel have a considerable influence on the formation of tread wear and damage. Also, the residual stress on wheel is formed during the manufacturing process is one of the main sources of the damage. In this paper, the mechanical characteristic and the residual stress according to wheel material have been evaluated by applying finite element analysis and conducting mechanical tests.

멀티스케일 모델링에 의한 복합재료 평판의 충격해석 (Impact analysis of composite plate by multiscale modeling)

  • 지국현;백승훈;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 춘계학술발표대회 논문집
    • /
    • pp.67-70
    • /
    • 2004
  • An investigation was performed to study the impact damage of the laminated composite plates caused by a low- velocity foreign object with multi-scale modeling based on the concepts of Direct Numerical Simulation (DNS)[4]. In the micro-scale part, we discretize the composite plates through separate modeling of fiber and matrix for the local microscopic analysis. A micro-scalemodel was developed for predicting the initiation of the damage and the extent of the final damage as a function of material properties, laminate configuration and the impactor's mass, etc. Anda macro-scale model was developed for description of global dynamic behavior. The connection betweenmicroscopic and macroscopic is implemented by the tied interface constraints of LS-DYNA contact card. A transient dynamic finite element analysis was adopted for calculating the contact force history and the stresses and strains inside the composites during impact resulting from a point-nose impactor. The low-velocity impact events such as contact force, deformation, etc. are simulated in the macroscopic sense and the impact damages, fiber-breakage, matrix cracking and delamination etc. are examined in the microscopic sense.

  • PDF

Numerical and experimental study on flexural behavior of reinforced concrete beams: Digital image correlation approach

  • Krishna, B. Murali;Reddy, V. Guru Prathap;Tadepalli, T.;Kumar, P. Rathish;Lahir, Yerra
    • Computers and Concrete
    • /
    • 제24권6호
    • /
    • pp.561-570
    • /
    • 2019
  • Understanding the realistic behavior of concrete up to failure under different loading conditions within the framework of damage mechanics and plasticity would lead to an enhanced design of concrete structures. In the present investigation, QR (Quick Response) code based random speckle pattern is used as a non-contact sensor, which is an innovative approach in the field of digital image correlation (DIC). A four-point bending test was performed on RC beams of size 1800 mm × 150 mm × 200 mm. Image processing was done using an open source Ncorr algorithm for the results obtained using random speckle pattern and QR code based random speckle pattern. Load-deflection curves of RC beams were plotted for the results obtained using both contact and non-contact (DIC) sensors, and further, Moment (M)-Curvature (κ) relationship of RC beams was developed. The loading curves obtained were used as input data for material model parameters in finite element analysis. In finite element method (FEM) based software, concrete damage plasticity (CDP) constitutive model is used to predict the realistic nonlinear quasi-static flexural behavior of RC beams for monotonic loading condition. The results obtained using QR code based DIC are observed to be on par with conventional results and FEM results.

고속열차 전기적 이선 특성 측정 방안 연구 (A Study of the Current Collection Characteristics Measurement Methodology for a High-Speed Train)

  • 조홍식;한인수;이태형;김석원;김영국
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.3052-3058
    • /
    • 2011
  • A high-speed train is the system that the electric power is supplied through the overhead contact line and drives motors. In this case that the de-wiring beteen the overhead contact line and the pantograph of a high-speed train, the occasion that smooth power supply is not accomplished occurs sometimes. If the de-wiring occurs, the arc discharge may damage the overhead contact line or the pantograph, and the falling-off in power quality may cause the damage and malfunctioning of motor block. This paper presents the methodology that the arc discharge by de-wring between overhead line and pantograph is discriminated through measuring the PT and CT in the vehicle, and measures the current collection characteristics for a high speed train.

  • PDF

질화규소 이층 층상재료의 접촉파괴거동 (Contact Fracture behavior of Silicon Nitride Bilayer)

  • 이기성;이승건;김도경
    • 한국재료학회지
    • /
    • 제8권4호
    • /
    • pp.293-298
    • /
    • 1998
  • 질화규소로 코팅된 질화규소-질화붕소 이층 층상복합재료의 접촉하중에 의한 파괴거동을 고찰하였다. 그 결과 코팅층내에서 새로운 종류의 균열들이 발견되었고, 이러한 균열들은 기하학적으로 원추 모양을 가짐을 확인하였다. 외부에서 가한 하중의 에너지는 코팅층 뿐 아니라 damage를 흡수할 수 있는 기판층 내로 분산되어 코팅층에서 시작된 균열들의 전파가 억제되었다.

  • PDF

Influence of mass and contact surface on pounding response of RC structures

  • Khatiwada, Sushil;Larkin, Tam;Chouw, Nawawi
    • Earthquakes and Structures
    • /
    • 제7권3호
    • /
    • pp.385-400
    • /
    • 2014
  • Pounding damage to bridges and buildings is observed in most major earthquakes. The damage mainly occurs in reinforced concrete slabs, e.g. building floors and bridge decks. This study presents the results from pounding of reinforced concrete slabs. A parametric investigation was conducted involving the mass of the pendulums, the relative velocities of impact and the geometry of the contact surface. The effect of these parameters on the coefficient of restitution and peak impact acceleration is shown. In contrast to predictions from numerical force models, it was observed that peak acceleration is independent of mass. The coefficient of restitution is affected by the impact velocity, total participating mass and the mass ratio of striker and struck block.

Study of ball bearing fatigue damage using vibration analysis: application to thrust ball bearings

  • Yessine, Toumi M.;Fabrice, Bolaers;Fabien, Bogard;Sebastien, Murer
    • Structural Engineering and Mechanics
    • /
    • 제53권2호
    • /
    • pp.325-336
    • /
    • 2015
  • This paper presents a study based on the damage due to the fatigue life of thrust ball bearings using vibratory analysis. The main contribution of this work lies in establishing a relation between modal damping and the rolling contact fatigue damage of the thrust ball bearing. Time domain signals and frequency spectra are extracted from both static and dynamic experiments. The first part of this research consists in measuring the damping of damaged thrust ball bearings using impact hammer characterization tests. In a second part, indented components representing spalled bearings are studied to determine the evolution of damping values in real-time vibration spectra using the random decrement method. Dynamic results, in good agreement with static tests, show that damping varies depending on the component's damage state. Therefore, the method detailed in this work will offer a possible technique to estimate the thrust ball bearing fatigue damage variation in presence of spalling.

Composite components damage tracking and dynamic structural behaviour with AI algorithm

  • Chen, Z.Y.;Peng, Sheng-Hsiang;Meng, Yahui;Wang, Ruei-Yuan;Fu, Qiuli;Chen, Timothy
    • Steel and Composite Structures
    • /
    • 제42권2호
    • /
    • pp.151-159
    • /
    • 2022
  • This study discusses a hypothetical method for tracking the propagation damage of Carbon Reinforced Fiber Plastic (CRFP) components underneath vibration fatigue. The High Cycle Fatigue (HCF) behavior of composite materials was generally not as severe as this of admixture alloys. Each fissure initiation in metal alloys may quickly lead to the opposite. The HCF behavior of composite materials is usually an extended state of continuous degradation between resin and fibers. The increase is that any layer-to-layer contact conditions during delamination opening will cause a dynamic complex response, which may be non-linear and dependent on temperature. Usually resulted from major deformations, it could be properly surveyed by a non-contact investigation system. Here, this article discusses the scanning laser application of that vibrometer to track the propagation damage of CRFP components underneath fatigue vibration loading. Thus, the study purpose is to demonstrate that the investigation method can implement systematically a series of hypothetical means and dynamic characteristics. The application of the relaxation method based on numerical simulation in the Artificial Intelligence (AI) Evolved Bat (EB) strategy to reduce the dynamic response is proved by numerical simulation. Thermal imaging cameras are also measurement parts of the chain and provide information in qualitative about the temperature location of the evolution and hot spots of damage.

마멸량의 대소에 따른 구름접촉 피로의 X선적 해석 (Discussion on Rolling Contact Fatigue with Wear Amount by X-ray Reflection)

  • 이한영
    • Tribology and Lubricants
    • /
    • 제10권2호
    • /
    • pp.51-55
    • /
    • 1994
  • Rolling friction test was carried out to investigate the effect of the wear amount on rolling contact fatigue process in lubrication oil. The methods of this process were conducted at two Hertzian contact pressure and three slide ratio in each case by employing normalized and annealed carbon steel. During process of the rolling contact fatigue, the number of rotation until surface damage was occurred, the wear amount of rolling contact surface, and residual stress and half-value breadth using X-ray reflection on rolling contact surface were investigated. The result of this study shows that rolling contact fatigue process was directly influenced by wear trend and was confirmed by change of residual stress and half-value breadth on rolling contact surface.