• Title/Summary/Keyword: Contact angle method

검색결과 640건 처리시간 0.064초

Numerical Study of Bubble Growth and Reversible Flow in Parallel Microchannels (병렬 미세관에서의 기포성장 및 역류현상에 관한 수치적 연구)

  • Lee, Woo-Rim;Son, Gi-Hun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제32권2호
    • /
    • pp.125-132
    • /
    • 2008
  • The bubble dynamics and heat transfer associated with nucleate boiling in parallel microchannels is studied numerically by solving the equations governing conservation of mass, momentum and energy in the liquid and vapor phases. The liquid-vapor interface is tracked by a level set method which is modified to include the effects of phase change at the interface and contact angle at the wall. Also, the reversible flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of contact angle, wall superheat and the number of channels on the bubble growth and reversible flow are quantified.

Preparation and Characterization of Poly(lactic acid) Nanocomposites Reinforced with Lignin-containing Cellulose Nanofibrils (리그닌 함유 셀룰로오스 나노섬유로 강화된 폴리락틴산 나노복합재의 제조 및 분석)

  • Sun, Haibo;Wang, Xuan;Zhang, Liping
    • Polymer(Korea)
    • /
    • 제38권4호
    • /
    • pp.464-470
    • /
    • 2014
  • A chemo-mechanical method was used to prepare lignin-containing cellulose nanofibrils(L-CNF) from unbleached woodpulps dispersed uniformly in an organic solvent. L-CNF/PLA composites were obtained by solvent casting method. The effects of L-CNF concentration on the composite performances were characterized by tensile test machine, contact angle machine, scanning electron microscope (SEM), and Fourier transform infrared spectroscopy (FTIR). The tensile test results indicated that the tensile strength and elongation-at-break increased by 50.6% and 31.8% compared with pure PLA. The contact angle of PLA composites decreased from $79.3^{\circ}$ to $68.9^{\circ}$. The FTIR analysis successfully showed that L-CNF had formed intermolecular hydrogen bonding with PLA matrix.

Flow Behaviors of Polymers in Micro Hot Embossing Process (미세 핫엠보싱 공정에서 폴리머의 유동특성)

  • Ban Jun Ho;Shin Jai Ku;Kim Byeong Hee;Kim Heon Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제22권8호
    • /
    • pp.159-164
    • /
    • 2005
  • The Hot Embossing Lithography(HEL) as a method fur the fabrication of the nanostructure with polymer is becoming increasingly important because of its simple process, low cost, high replication fidelity and relatively high throughput. In this paper, we carried out experimental studies and numerical simulations in order to understand the viscous flow of the polymer (PMMA) film during the hot embossing process. To grasp the characteristics of the micro patterning rheology by process parameters (embossing temperature, pressure and time), we have carried out various experiments by using the nickel-coated master fabricated by the deep RIE process and the plasma sputtering. During the hot embossing process, we have observed the characteristics of the viscoelastic behavior of polymer. Also, the viscous flow during the hot embossing process has been simulated by the continuum based FDM(Finite Difference Method) analysis considering the micro effect, such as a surface tension and a contact angle.

Numerical Study on Flow and Heat Transfer Enhancement during Flow Boiling in Parallel Microchannels (병렬 미세관 흐름비등의 유동특성 및 열전달 향상에 대한 수치적 연구)

  • Jeon, Jin-Ho;Lee, Woo-Rim;Suh, Young-Ho;Son, Gi-Hun
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.472-473
    • /
    • 2008
  • Flow boiling in parallel microchannels has received attention as an effective heat sink mechanism for power-densities encountered in microelectronic equipment. the bubble dynamics coupled with boiling heat transfer in microchannels is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulation is performed to further clarify the dynamics of flow boiling in microchannels. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle. The method is further extended to treat the no-slip and contact angle conditions on the immersed solid. Also, the reverse flow observed during flow boiling in parallel microchannels has been investigated. Based on the numerical results, the effects of channel shape and inlet area restriction on the bubble growth, reverse flow and heat transfer are quantified.

  • PDF

Chemically Modified Superhydrophobic Zinc Oxide nanoparticle surface

  • Lee, Mi-Gyeong;Gwak, Geun-Jae;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.448-448
    • /
    • 2011
  • We investigated the fabrication method of superhydrophobic nanocoating prepared by a simple spin-coating and the chemisorption of fatty acid. The resulting coating showed a tremendous water repellency (static water contact angle = $154^{\circ}$) and the water contact angle can be modulated by changing the number of deposition cycles of ZnO and the carbon length of Self-Assembled Monolayers (SAM). Varying the number of deposition cycles of ZnO controlled the surface roughness, and affected to the superhydrophobicity. This simple coating method can be universally applicable to any substrates including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below $250^{\circ}C$ and under dynamic conditions.

  • PDF

Numerical Study of Droplet Dynamics in a PEMFC Air Flow Channel (고분자전해질형 연료전지의 공기 채널 내에서의 액적 거동에 대한 수치적 연구)

  • Choi, Ji-Young;Son, Gi-Hun
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2390-2395
    • /
    • 2008
  • The water droplet motion in an air flow microchannel with pores through which water emerges is studied numerically by solving the equations governing the conservation of mass and momentum. The gas-liquid interface is tracked by a level set method which is based on a sharp-interface representation for accurately imposing the matching conditions at the interface and is modified to implement the contact angle conditions on the wall and pores. The numerical results show that the droplet growth and detachment pattern depend significantly on the contact angle and inlet air velocity. Also, the dynamic interaction between the droplets growing on multiple pores is investigated. The pore arrangement subject to droplet merging is found to be not effective for water removal.

  • PDF

Study on Characteristics of a Droplet in Two-dimensional Channel with Moving Bottom Wall (바닥면이 움직이는 이차원 채널 내 액적의 특성 연구)

  • Kim, Hyung-Rak;Yoon, Hyun-Sik;Jeong, Hae-Kwon;Ha, Man-Yeong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • 제23권2호
    • /
    • pp.103-110
    • /
    • 2011
  • A two-dimensional immiscible droplet deformation phenomena on moving wall in a channel has been investigated by using lattice Boltzmann method involving two-phase model. The dependence of the deformation of the droplet with different sizes on the contact angle and the velocity of bottom wall has studied. When the bottom wall starts to move, the deformation of the droplet occurs. For the largest bottom wall velocity, eventually, the deformation of the droplet is classified into the three patterns according to the contact angle.

Synthesis of N-doped Ethylcyclohexane Plasma Polymer Thin Films with Controlled Ammonia Flow Rate by PECVD Method

  • Seo, Hyunjin;Cho, Sang-Jin;Boo, Jin-Hyo
    • Applied Science and Convergence Technology
    • /
    • 제23권1호
    • /
    • pp.44-47
    • /
    • 2014
  • In this study, we investigated the basic properties of N-doped ethylcyclohexene plasma polymer thin films that deposited by radio frequency (13.56 MHz) plasma-enhanced chemical vapor deposition (PECVD) method with controlled ammonia flow rate. Ethylcyclohexene was used as organic precursor with hydrogen gas as the precursor bubbler gas. Additionally, ammonia ($NH_3$) gas was used as nitrogen dopant. The as-grown polymerized thin films were analyzed using ellipsometry, Fourier-transform infrared [FT-IR] spectroscopy, UV-Visible spectroscopy, and water contact angle measurement. We found that with increasing plasma power, film thickness is gradually increased while optical transmittance is drastically decreased. However, under the same plasma condition, water contact angle is decreased with increasing $NH_3$ flow rate. The FT-IR spectra showed that the N-doped ethylcyclohexene plasma polymer films were completely fragmented and polymerized from ethylcyclohexane.

Preparation of Self-Cleaning Coating Films with Nano- and Microstructure (나노마이크로 구조의 자기세정 기능성 코팅막의 제조)

  • Jeong, A-Rong;Kim, Jun-Su;Yun, Jon-Do
    • Korean Journal of Materials Research
    • /
    • 제22권8호
    • /
    • pp.416-420
    • /
    • 2012
  • Recently nanoscience and nanotechnology have been studied intensively, and many plants, insects, and animals in nature have been found to have nanostructures in their bodies. Among them, lotus leaves have a unique nanostructure and microstructure in combination and show superhydrophobicity and a self-cleaning function to wipe and clean impurities on their surfaces. Coating films with combined nanostructures and microstructures resembling those of lotus leaves may also have superhydrophobicity and self-cleaning functions; as a result, they could be used in various applications, such as in outfits, tents, building walls, or exterior surfaces of transportation vehicles like cars, ships, or airplanes. In this study, coating films were prepared by dip coating method using polypropylene polymers dissolved in a mixture of solvent, xylene and non-solvent, methylethylketon, and ethanol. Additionally, attempts were made to prepare nanostructures on top of microstructures by coating with the same coating solution with an addition of carbon nanotubes, or by applying a carbon nanotube over-coat on polymer coating films. Coating films prepared without carbon nanotubes were found to have superhydrophobicity, with a water contact angle of $152^{\circ}$ and sliding angle less than $2^{\circ}$. Coating films prepared with carbon nanotubes were also found to have a similar degree of superhydrophobicity, with a water contact angle of 150 degrees and a sliding angle of 3 degrees.

A Study on the Improvement of Adhesive Strength of Between Metal and Polyethylene Materials (금속재와 폴리에틸렌 재료간의 접착강도 향상에 대한 연구)

  • Lee, Ji-Hoon;Kim, Hyun-Ju;Jung, Dong-Ho;Rhee, Kyong-Yop
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제24권12호
    • /
    • pp.143-148
    • /
    • 2007
  • Polyethylene is a typical hydrophobic material and it is difficult to bond the polyethylene material with metal material. Thus, it is important to modify the surface of polyethylene material to improve the bonding strength between the polyethylene and the metal materials. In this study, the surface modification of polyethylene material was investigated to improve the interfacial strength between the polyethylene and the steel materials. Polyethylene material was surface-modified in a plasma cleaner using an oxygen gas. Two cases of composites (surface-modified pelyethylene/steel composite and regular (as-received) pelyethylene/steel composite) were fabricated using a secondary bonding method. Shear and bending tests have been performed using the two cases of composites. The results showed that the contact angle did not change much as the modification time increased. However, the contact angle decreased from ${\sim}76^{\circ}\; to\;{\sim}41^{\circ}$ with the modification. The results also showed that the shear strength and the bending strength were improved about 3030 % and 7 %, respectively when the polyethylene was plasma-modified using an oxygen gas.