• Title/Summary/Keyword: Contact Stiffness

Search Result 515, Processing Time 0.038 seconds

Dynamic Analysis of Tie-rod-fastened Rotor Considering Elastoplastic Deformation (탄소성 변형을 고려한 타이로드 고정 회전체의 동역학 해석)

  • Dongchan Seo;Kyung-Heui Kim;Dohoon Lee;Bora Lee;Junho Suh
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.8-16
    • /
    • 2024
  • This study conducts numerical modeling and eigen-analysis of a rod-fastened rotor, which is mainly used in aircraft gas turbine engines in which multiple disks are in contact through curvic coupling. Nayak's theory is adopted to calculate surface parameters measured from the tooth profile of the curvic coupling gear. Surface parameters are important design parameters for predicting the stiffness between contact surfaces. Based on the calculated surface parameters, elastoplastic contact analysis is performed according to the interference between two surfaces based on the Greenwood-Williamson model. The equivalent bending stiffness is predicted based on the shape and elastoplastic contact stiffness of the curvic coupling. An equation of motion of the rod-fastened rotor, including the bending stiffness of the curvic coupling, is developed. Methods for applying the bending stiffness of a curvic coupling to the equation of motion and for modeling the equation of motion of a rotor that includes both inner and outer rotors are introduced. Rotordynamic analysis is performed through one-dimensional finite element analysis, and each element is modeled based on Timoshenko beam theory. Changes in bending stiffness and the resultant critical speed change in accordance with the rod fastening force are predicted, and the corresponding mode shapes are analyzed.

Reliability Design of MEMS based on the Physics of Failures by Stress & Surface Force (응력 및 표면 고장물리를 고려한 MEMS 신뢰성 설계 기술)

  • Lee, Hak-Joo;Kim, Jung-Yup;Lee, Sang-Joo;Choi, Hyun-Ju;Kim, Kyung-Shik;Kim, J.H.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1730-1733
    • /
    • 2007
  • As semiconductor and MEMS devices become smaller, testing process during their production should follow such a high density trend. A circuit inspection tool "probe card" makes contact with electrode pads of the device under test (DUT). Nowadays, electrode pads are irregularly arranged and have height difference. In order to absorb variations in the heights of electrode pads and to generate contact loads, contact probes must have some levels of mechanical spring properties. Contact probes must also yield a force to break the surface native oxide layer or contamination layer on the electrodes to make electric contact. In this research, new vertical micro contact probe with bellows shape is developed to overcome shortage of prior work. Especially, novel bellows shape is used to reduce stress concentration in this design and stopper is used to change the stiffness of micro contact probe. Variable stiffness can be one solution to overcome the height difference of electrode pads.

  • PDF

Analysis of the Major Design Parameters of a Pantograph-Railway Catenary System for Improving the Current Collection Quality (집전성능 향상을 위한 팬터그래프-전차선의 주요 설계 파라미터분석)

  • Cho, Yong Hyeon
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.1
    • /
    • pp.7-13
    • /
    • 2014
  • Stiffness variations and wave propagation/reflection in railway catenaries are the primary sources of contact loss between a pantograph and a railway contact wire. This paper analyzes which design parameter is more important for 200km/h conventional rail and 300km/h high-speed rail, in order to effectively reduce the contact loss. For the high-speed rail, the wave propagation and reflection in the overhead contact lines are more influential than the stiffness variation over a span. When the high-speed rail needs to speed-up, it is necessary to develop higher strength contact wires in order to increase the wave propagation speed. In addition, the dropper clamp mass should be reduced in order to alleviate the wave reflection. However, it is noted that the increase in the tension to a messenger wire could deteriorate the current collection quality, which contrasts with expectations. For the 200km/h conventional rail, the stiffness variation over a span is more influential than the wave propagation and reflection. Therefore, shortening span length, increasing the tension in the contact wire and optimizing the location of the droppers are recommended for a smoother stiffness variation over the span.

Fabrication of a novel dry adhesive structure with reduced effective stiffness (유효강성을 줄인 새로운 형상의 건식부착물 제작)

  • Cho, Young-Sam;Jung, Dae-Hwan;Han, Houk-Seop;Kim, Wan-Doo
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.421-425
    • /
    • 2007
  • In the fabrication of dry adhesive structure, increasing contact-points or contact-area is the primary goal because the adhesive force grows in proportion to the contact-area. The simplest way to extend the contact surface is the fabrication by using soft materials. However, the column-array structure could confront the matting phenomenon which columns are stuck together. Therefore, we need a novel design to reduce the effective stiffness with adequate stiff materials like a gecko's setae. In this study, we propose a novel design for the dry adhesive structure. Moreover, we analyzed whether the adhesive structure conforms the rough surface sufficiently through finite element method adopted the non-bonding interaction as the body force. Also, we fabricated the novel structures via UV lithography and some techniques. In addition, we examined the adhesive force of the novel structures.

  • PDF

Optimization of Spindle Units Considering the Decrease of Bearing Stiffness at High Speed Revolution (고속 회전시 베어링 강성강하를 고려한 주축 유니트의 최적화)

  • Lee, Chan-Hong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.717-723
    • /
    • 2010
  • Radial stiffness of angular contact ball bearings are decreased remarkably at high speed revolution, because the inner and outer ball contact angle with races arc changed under the ball centrifugal forces at high speed. In the past, the optimizations of spindle units were done under the assumption of unchanged bearing stiffness for the whole speed range. But the bearing stiffness is changed and the dimension of optimum spindle is also changed with speed. In the design phase, only one model of many optimum spindle models with speed should be selected. As optimization criterion, the area of transfer function at spindle nose is proposed to estimate simply and accurately improvement of dynamic characteristics in spindle units. Finally, according to many analyses of diverse spindle models with decreased bearing stiffness, the spindle with shorter bearing span is better than longer bearing span from the viewpoint of dynamic characteristics.

Anchorage mechanism of inflatable steel pipe rockbolt depending on rock stiffness (팽창형 강관 록볼트의 암반 강성에 따른 정착 거동 특성)

  • Kim, Kyeong-Cheol;Kim, Ho-Jong;Jung, Young-Hoon;Shin, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.249-263
    • /
    • 2017
  • The expansion behavior of inflatable steel pipe rockbolt shows geometric nonlinearity due to its ${\Omega}-shaped$ section. Previous studies on the anchoring behavior of inflatable steel pipe rockbolt were mainly performed using theoretical method. However, those studies oversimplified the actual behavior by assuming isotropic expansion of inflatable steel pipe rockbolt. In this study, the anchoring behavior of the inflatable steel pipe rockbolt were investigated by the numerical method considering the irregularity of pipe expansion and other influencing factors. The expansion of inflatable steel pipe rockbolt, the contact stress distribution and the change of the average contact stress and the contact area during installation were analyzed. The contact stresses were developed differently depending on the constitutive behavior of rocks. Small contact stresses occurred in steel pipes installed in elasto-plastic rock compared to steel pipes installed in elastic rock. Also, the anchoring behaviors of the inflatable steel pipe rockbolt were different according to the stiffness of the rock. The steel pipe was completely unfolded in the case of the stiffness smaller than 0.5 GPa, but it was not fully unfolded in the case of the stiffness larger than 0.5 GPa for the given analysis condition. When the steel pipe is completely unfolded, the contact stress increases as the rock stiffness increases. However, the contact stress decreases as the rock stiffness increases when the steel pipe is not fully expanded.

A Study on the Within Wafer Non-uniformity of Oxide Film in CMP (CMP 패드 강성에 따른 산화막 불균일성(WIWNU)에 관한 연구)

  • Park, Ki-Hyun;Jung, Jae-Woo;Park, Boum-Young;Seo, Heon-Deok;Lee, Hyun-Seop;Jeong, Hae-Do
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.6
    • /
    • pp.521-526
    • /
    • 2005
  • Within wafer non-uniformity(WIWNU) improves as the stiffness of pad decrease. We designed the pad groove to study of pad stiffness on WIWNU in Chemical mechanical polishing(CMP) and measured the pad stiffness according to groove width. The groove influences effective pad stiffness although original mechanical properties of pad are unchanged by grooving. Also, it affects the flow of slurry that has an effect on the lubrication regime and polishing results. An Increase of the apparent contact area of pad by groove width results in decrease of effective pad stiffness. WIWNU and profile of removal tate improved as effective pad stiffness decreased. Because grooving the pad reduce its effective stiffness and it makes slurry distribution to be uniform. Futhermore, it ensures that pad conforms to wafer-scale flatness variability. By grooving the top pad, it is possible to reduce its stiffness and hence reduce WIWNU and edge effect.

Nonlinear Vibration Analysis of Porous Thin Plate with Wire Impact Damping (와이어 충돌감쇠를 갖는 다공성 박판의 비선형 진동 해석)

  • 김성대;김원진;이부윤;이종원
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.341-348
    • /
    • 2001
  • In this study, nonlinear vibration analysis of the cylindrical orthotropic porous thin plate under V-shaped tension distribution with wire impact damping is considered. We make dynamic model of the plate under the tension using commercial FEM code and reduce the number of its degrees of freedom using dynamic condensation. The dynamic model of wire is obtained as lumped mass model from string equation. And then we analyze the nonlinear vibration of the plate including the impact phenomenon between the plate and the wire using the reduced mass and stiffness matrices of the plate and lumped model of the wire. The contact phenomenon between them can be described by impact contact elements composed of contact stiffness coefficients from Hertzian contact theory and contact damping coefficients from restitution coefficient between them. And we discussed the results of nonlinear vibration analysis for variations of their design parameters.

  • PDF