• Title/Summary/Keyword: Contact Shape

Search Result 1,070, Processing Time 0.031 seconds

A Study on Design of Barrel Cam for Automatic Bulb Production Machine (전구 자동화 생산기계용 바렐 캠의 형상설계에 관한 연구)

  • Kim, Jong-Su;Yun, Ho-Eop
    • 연구논문집
    • /
    • s.33
    • /
    • pp.89-97
    • /
    • 2003
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then detemines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower. Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents shape design of the barrel cam in order to prove the accuracy of the proposed methods

  • PDF

A Study on the Method for Reducing the Noise of the Progressive Multi-Leaf Spring (Progressive Multi-Leaf Spring의 소음저감 방안에 관한 연구)

  • Kim, Sung-Soo;Moon, Won-Kyu;Yoo, Young-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.636-642
    • /
    • 2000
  • A method for reducing the contact noise of the Progressive Multi-Leaf Spring was investigated. It was found that the contact noise between the main and the help springs is the main source of the noise through our experiments. The conclusions from our experiments were compared with those from our numerical analysis by use of ABAQUS. The main parameters for the unexpected noise in the leaf spring were investigated through structural analysis to make describing noise generation. The contact process between the two leaves is examined by numerical calculations by ABAQUS. The noise produced by the leaf spring could be dramatically reduced by changing the shape of help spring so as to remove a translational jump of the contact point between the main and the help springs. Even with the help spring of the new proposed shape the stiffness of the whole spring did not change much.

  • PDF

Visualization of Geometric Features in the Contact Region of Proteins (단백질 접촉 영역의 기하학적 특성 가시화)

  • Kim, Ku-Jin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.10
    • /
    • pp.421-426
    • /
    • 2019
  • In this paper, we propose a method to visualize the geometric features of the contact region between proteins in a protein complex. When proteins or ligands are represented as curved surfaces with irregularities, the property that the two surfaces contact each other without intersections is called shape compatibility. Protein-Protein or Protein-Ligand docking researches have shown that shape complementarity, chemical properties, and entropy play an important role in finding contact regions. Usually, after finding a region with high shape complementarity, we can predict the contact region by using residual polarity and hydrophobicity of amino acids belonging to this region. In the research for predicting the contact region, it is necessary to investigate the geometrical features of the contact region in known protein complexes. For this purpose, it is essential to visualize the geometric features of the molecular surface. In this paper, we propose a method to find the contact region, and visualize the geometric features of it as normal vectors and mean curvatures of the protein complex.

Design and Experiment investigation of disk bump to improve unload performance in HDD (HDD에서 언로드 성능향상을 위한 디스크 범프의 설계 및 실험 연구)

  • Lee, Hyung-Jun;Lee, Yong-Hyun;Park, Gyeong-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.833-836
    • /
    • 2007
  • Load/Unload technology has more benefits than the conventional CSS technology. However, it remains unsolved technical problem on the unloading process. While the slider climbs up the ramp at the outer edge of the disk, the possibility of the slider-disk contact by lift-off force and rebound of the slider increases. This paper focuses on no slider-disk contact. To prevent the slider-disk contact, we apply the disk bump on disk outer edge proceeding unload. Firstly, in the simulation, the bump dimension is determined by changing bump design parameters. Secondly, dynamic stability of slider have to be checked on disk bump before unload analysis, and unload analysis is performed by applying stable bump shapes to unload simulation. Thirdly, we select optimal bump shape to improve unload performance by unload analysis. Finally, in the experiment, the disk bump is mechanically manufactured by pressing disk surface using diamond tip. That is variously processed by changing pressing pressure. After confirming bump shape by nano-scanner, proper bump shape is applied to real experimental unload process. Through this investigation, we propose the optimal bump design to prevent the slider-disk contact, and then we can realize improved unloading performance.

  • PDF

Active shape exploration of an unknown object by using robot hand (로봇손을 이용한 미지 물체의 능동적 형상탐사에 관한 연구)

  • 김진호;오상록;최혁렬
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.768-771
    • /
    • 1997
  • Geometric probing addresses the problem of determining geometric aspects of a structure from the mathematics and results of a physical measuring device such as a probe. This paper presents a new algorithm to recognize the shape of an unknown object by using a robot hand with a force and torque sensor. The new algorithm is called S.E.P.(Shape Exploration Procedure) which finds the global shape of an unknown object. The proposed method is composed of three major parts, finding contact informations such as contact point, calculation of shape information such as curvature, and expression of global shape from these informations. Comparing with the conventional approaches, the advantages of the proposed method are explained and verified by conducting experiments with a 3-dof SCARA robot.

  • PDF

A study on relative velocity approach for shape desing to cylindrical cam with rotating roller follower on faced-vertical axes (직교축상의 회전운동용 롤러 종동절을 수반하는 원통형 캠의 형상설계를 위한 상대속도법에 관한 연구)

  • 김성원;신중호;강동우;장세원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.612-615
    • /
    • 2000
  • Cam mechanism is one of the common devices used in many automatic machinery. Specially cylindrical cam generates three dimensional motions. Thus, the shape design procedures must have high accuracy. This paper proposes the shape design procedure for a cylindrical cam and follower mechanism using a relative velocity method. The relative velocity method and the coordinate transformation are used to find a contact point between the cam and the follower. Also, the full shape of the cylindrical cam can be generated by using the geometric relationships and the contact constraints. As a result, this paper presents an example for the shape design of the cylindrical cam in order to prove the accuracy of the design procedures.

  • PDF

A Study on Design of Barrel Cam Using Relative Velocity (상대속도를 이용한 바렐 캠의 설계에 관한 연구)

  • Shin, Joong-Ho;Kim, Sung-Won;Kang, Dong-Woo;Yoon, Ho-Eop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.8
    • /
    • pp.47-54
    • /
    • 2002
  • A barrel cam is used as a very important part of an index drive unit. The index drive unit must have an intermittent-rotational motion. The barrel typed cam and roller gear mechanism has the advantages of high reliability to perform a prescribed motion of a follower. This paper proposes a new method for the shape design of the barrel cam and also a CAD program is developed by using the proposed method. As defined in this paper, the relative velocity method for the shape design calculates the relative velocity of the follower versus cam at a center of roller, and then determines a contact point by using the geometric relationships and the kinematic constraints, where the direction of the relative velocity must be parallel to a common tangential line at the contact point of two independent bodies, i.e. the cam and the follower Then, the shape of the cam is defined by the coordinate transformation of the trace of the contact points. This paper presents two examples for the shape design of the barrel cam in order to prove the accuracy of the proposed methods.

Study on Shape Design Method of Cycloidal Plate Gear (사이크로이드 판기어의 형상설계법에 관한 연구)

  • Sin, Jung-Ho;Yun, Ho-Eop;Gang, Dong-U
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.1
    • /
    • pp.70-80
    • /
    • 2001
  • A cycloid reducer is one of the rotational velocity reduction equipments of machinery. It has advantages of the higher reduction ratio, the higher accuracy, the easier adjustment of transmission ratio and the smaller workspace than other kinds of reducer. A cycloidal plate gear is a main part of the cycloid reducer. Its tooth shape is peculiar because of gearing with the roller gear that has the several rollers on the circular line. And then it can be designed to contact all teeth to rollers. So, the cycloid reducer has the good characteristics in the dynamic properties and the zero-backlash in the contact motion. It can be used in robots, high-precision machines and high capacity machinery. This paper proposes a new approach for the shape design of the cycloidal plate gear and presents a Computer-Aided-Design program developed by the proposed method. The first part of this paper defines the two types of the cycloid reducers and explains their mechanisms. The second part defines the instant velocity centers for each type of the cycloid reducers and calculates the contact angles and the contact points by using te geometric relationships and the kinematical properties of the reducers. The third part generates the full shape of the cycloidal plate gear by the coordinate transformation technique. Finally, this paper presents two examples for the shape design of the cycloidal plate gear in order to prove the theory of the proposed method in this paper and the accuracy of the \"CycloGear Designer\".

A study on numerical analysis of heat affected zone in detailed shape processing using Non-contact hot tool (비접촉식 열 공구를 이용한 미세 형상 가공에서의 열 영향부에 대한 수치적 모사에 관한 연구)

  • 김효찬;안동규;이상호;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.569-572
    • /
    • 2003
  • In VLM-ST process, the fine detailed shape processing process is needed due to the use of thick sheets for layers. The developed process perform the fine detailed shape processing in VLM-ST parts using non-contact hot tool. To predict the heat-affected zone and temperature distribution of VLM-ST parts in detailed shaping, the heat flux from the tool to the surface was calculated for the finite element analysis by modeling the tool as a heat source of radiation. The dominant process parameters such as the radiated heat input, the tool speed, and the gap between the tool tip and the foam sheet (tool height) were considered in the analysis. The results showed a good agreement with the experiments.

  • PDF