• Title/Summary/Keyword: Contact Resistivity

Search Result 257, Processing Time 0.031 seconds

Influence of Cu Doping and Heat Treatments on the Physical Properties of ZnTe Films (Cu 도핑과 열처리가 ZnTe 박막의 물성에 미치는 영향)

  • Choe, Dong-Il;Yun, Se-Wang;Kim, Dong-Hwan
    • Korean Journal of Materials Research
    • /
    • v.9 no.2
    • /
    • pp.173-180
    • /
    • 1999
  • Thermally evaporated ZnTe films were investigated as a back contact material for CdS/CdTe solar cells. Two deposition methods, coevaporation and double-layer methods, were used for Cu doping in ZnTe films. ZnTe layers (0.2$\mu\textrm{m}$ thick) were deposited either on glass or on CdS/CdTe substrates without intentional heating of the substrates. Post-deposition annealing was performed at 200,300 and $400^{\circ}C$ for 3,6 and 9 minutes, respectively. Band gap of 2.2eV was measured for both undoped and doped films and a slight change in the shape of absorption spectra was observed in Cu-doped samples after annealing at $400^{\circ}C$. The resistivity of as-deposited ZnTe decreased from 10\ulcorner~10\ulcornerΩcm down to 10\ulcornerΩcm as Cu concentration increased from 0 to 14 at.%. There was not a noticeable change in less of annealing temperature up to $300^{\circ}C$ whereas films annealed at $400^{\circ}C$ revealed hexagonal (101) orientations as well. Some of Cu-doped ZnTe revealed x-ray diffraction (XRD) peaks related with Cu\ulcornerTe(x=1.75~2). Grain growth was observed from about 20nm in as-deposited films to 50nm after annealing at $400^{\circ}C$ by scanning electron microscopy (SEM). Cu distribution in ZnTe films was not uniform according to Auger electron spectroscopy (AES) measurements.

  • PDF

Contribution of Geophysics to the Study of Barite Mineralization in the Paleozoic Formations of Asdaf Tinejdad (Eastern Anti Atlas Morocco)

  • Ibrahim, Dakir;Ahmed, Benamara;Habiba, Aassoumi;Abdessalam, Ouallali;Youssef, Ait Bahammou
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.259-269
    • /
    • 2020
  • The use of the geophysical method in mining prospecting has been studied in the Asdaf region (South-East of Morocco). The objective of the study is to examine the aptitude of the electrical technique, in this case induced polarization (IP) and electric tomography, combined with the electromagnetic method (VLF), in the exploration of barite . The result obtained by the pseudo-sections of electrical tomography and that of KH filtration highlighted anomalies of resistant contact (greater than 400Ω.m) and of high charge chargeability (5mV / V). These contacts are hosted in less resistant Devonian age shale and sandstone. The resistivity response obtained at their level is characteristic of the venous structures associated with barite mineralization. The direction of the mineralized veins is parallel to the direction of the fractured zones (NE-SW), which indicates that the mineralization in place is due to the tectonic movements of the Hercynian orogeny (from Devonian to Permian). These veins are aligned with the locations of abandoned mine shafts and with surface mining areas. Geophysical technique therefore seems to play a key role in barite mining exploration.

Properties of Ga-doped ZnO transparent conducting oxide fabricated on PET substrate by RF magnetron sputtering (RF 마그네트론 스퍼터링 공정으로 PET 기판 위에 제조한 Ga-doped ZnO 투명전도막의 특성)

  • Kim, Jeong-Yeon;Kim, Byeong-Guk;Lee, Yong-Koo;Kim, Jae-Hwa;Woo, Duck-Hyun;Kweon, Soon-Yong;Lim, Dong-Gun;Park, Jae-Hwan
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • The effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films on PET substrate were studied. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PET substrate and the GZO film, $O_2$ plasma pretreatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the crystallinity increased and the contact angle decreased significantly. When the RF power was 100 W and the treatment time was 600 sec in $O_2$ plasma pretreatment process, the resistivity of GZO films on the PET substrate was $1.90{\times}10^{-3}{\Omega}-cm$.

Effect of Temperature and Surfactant on Crystallization of Al-Based Metallic Glass during Pulverization (분쇄 공정의 온도와 분산제 사용이 알루미늄계 금속유리의 결정화에 미치는 영향)

  • Tae Yang Kim;Chae Yoon Im;Suk Jun Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.63-70
    • /
    • 2023
  • In this study, crystallization was effectively suppressed in Al-based metallic glasses (Al-MGs) during pulverization by cryo-milling by applying an extremely low processing temperature and using a surfactant. Before Al-MGs can be used as an additive in Ag paste for solar cells, the particle sizes of the Al-MGs must be reduced by milling. However, during the ball milling process crystallization of the Al-MG is a problem. Once the Al-MG is crystallized, they no longer exhibit glass-like behavior, such as thermoplastic deformation, which is critical to decrease the electrical resistance of the Ag electrode. The main reason for crystallization during the ball milling process is the heat generated by collisions between the particles and the balls, or between the particles. Once the heat reaches the crystallization temperature of the Al-MGs, they start crystallization. Another reason for the crystallization is agglomeration of the particles. If the initially fed particles become severely agglomerated, they coalesce instead of being pulverized during the milling. The coalesced particles experience more collisions and finally crystallize. In this study, the heat generated during milling was suppressed by using cryo-milling with liquid-nitrogen, which was regularly fed into the milling jar. Also, the MG powders were dispersed using a surfactant before milling, so that the problem of agglomeration was resolved. Cryo-milling with the surfactant led to D50 = 10 um after 6 h milling, and we finally achieved a specific contact resistance of 0.22 mΩcm2 and electrical resistivity of 2.81 μΩcm using the milled MG particles.

Nondestructive Evaluation and Microfailure Mechanisms of Single Fibers/Brittle Cement Matrix Composites using Electro-Micromechanical Technique and Acoustic Emission (Electro-Micromechanical 시험법과 Acoustic Emission을 이용한 단섬유/시멘트 복합재료의 미세파괴 메커니즘과 비파괴적 평가)

  • 박종만;이상일;김진원;윤동진
    • Composites Research
    • /
    • v.14 no.3
    • /
    • pp.18-31
    • /
    • 2001
  • Interfacial and microfailure properties of the modified steel, carbon and glass fibers/cement composites were investigated using electro-pullout test under tensile and compressive tests with acoustic emission (AE). The hand-sanded steel composite exhibited higher interfacial shear strength (IFSS) than the untreated and even neoalkoxy zirconate (Zr) treated steel fiber composites. This might be due to the enhanced mechanical interlocking, compared to possible hydrogen or covalent bonds. During curing process, the contact resistivity decreased rapidly at the initial stage and then showed a level-off. Comparing to the untreated case, the contact resistivity of either Zr-treated or hand-sanded steel fiber composites increased to the infinity at latter stage. The number of AE signals of hand-sanded steel fiber composite was much more than those of the untreated and Zr-treated cases due to many interlayer failure signals. AE waveforms for pullout and frictional signals of the hand-sanded composite are larger than those of the untreated case. For dual matrix composite (DMC), AE energy and waveform under compressive loading were much higher and larger than those under tensile loading, due to brittle but well-enduring ceramic nature against compressive stress. Vertical multicrack exhibits fur glass fiber composite under tensile test, whereas buckling failure appeared under compressive loading. Electro-micromechanical technique with AE can be used as an efficient nondestructive (NDT) method to evaluate the interfacial and microfailure mechanisms for conductive fibers/brittle and nontransparent cement composites.

  • PDF

A Feasibility Study of AMT Application to Tidal Flat Sedimentary Layer (갯벌 지역의 하부퇴적층에 대한 AMT 탐사의 적용 가능성 평가)

  • Kwon, Byung-Doo;Lee, Choon-Ki;Park, Gye-Soon;Choi, Su-Young;Yoo, Hee-Young;Choi, Jong-Keun;Eom, Joo-Young
    • Journal of the Korean earth science society
    • /
    • v.28 no.1
    • /
    • pp.64-74
    • /
    • 2007
  • The marine seismic prospecting using a research vessel in the shallow sea near the coastal area has certain limits according to the water depth and survey environment. Also, for the electrical resistivity survey at seashore area, one may need a specially designed high-voltage source to penetrate the very conductive surface layer. Therefore, we have conducted a feasibility study on the application of magnetotelluric method (MT), a passive geophysical method, on investigating of shallow marine environment geology. Our study involves both theoretical modeling and field survey at the tidal flat area which represent the very shallow marine environment. We have applied the audio-frequency magnetotelluric (AMT) method to the intertidal deposits of Gunhung Bay, west coast of Korea, and analysed the field data both qualitatively and quantitatively to investigate the morphology and sedimentary stratigraphy of the tidal flat. The inversion of AMT data well reveals the upper sedimentary layer of Holocene intertidal sediments having a range of 13-20 m thickness and the erosional patterns at the unconformable contact boundary. However, the AMT inversion results tend to overestimate the depth of basement (30-50 m) when compared with the seismic section (27-33 m). Since MT responses are not significantly sensitive to the resistivity of middle layer or the depth of basement, the AMT inversion result for basement may have to be adjusted using the comparison with other geophysical information like seismic section or logging data if possible. But, the AMT method can be an effective alternative choice for investigating the seashore area to get important basic informations such as the depositional environment of the tidal flat, sea-water intrusion and the basement structure near the sea shore.

Fabrication and Characterization of Transparent Conductive Film based on Bacterial Cellulose (Bacterial cellulose를 기반으로 하는 투명전도성막의 제조 및 특성평가)

  • Yim, Eun-Chae;Kim, Seong-Jun;Kee, Chang-Doo
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.766-773
    • /
    • 2013
  • A transparent film was fabricated based on bacterial cellulose (BC), BC has excellent physical strength and stability at high temperature and it is an environmental friendly flexible material. In order to improve the conductivity, silver nanowire (AgNW) and/or graphene were introduced to the BC membrane. The aspect ratio of the AgNW synthesized in this study was 214, with a length of $15{\mu}m$ and width of 70 nm. The higher aspect ratio improved the conductivity by reducing the contact resistance. The thermal and electrical properties of 7 types of films prepared were investigated. Each film was fabricated with rectangular shape ($2mm{\times}2mm{\times}50{\mu}m$). The films were scored with a net shape by a knife, and filled with AgNW and graphene to bestow conductivity. The film filled with AgNW showed favorable electrical characteristics with a thickness of $350{\mu}m$, electron concentration of $1.53{\times}10^{19}$, electron mobility of $6.63{\times}10^5$, and resistivity of 0.28. The film filled with graphene had a thickness of $360{\mu}m$, electron concentration of $7.74{\times}10^{17}$, electron mobility of 0.17, and resistivity of 4.78. The transmittances at 550 nm were 98.1% and 80.9%, respectively. All the films were able to light LEDs bulbs although their brightness differed. A thermal stability test of the BC and PET films at $150{\pm}5^{\circ}C$ showed that the BC film was more stable, whereas the PET film was quickly banded. From these results, it was confirmed that there it is possible to fabricate new transparent conductivity films based on BC.

Single Carbon Fiber/Acid-Treated CNT-Epoxy Composites by Electro-Micromechanical Technique and Wettability Test for Dispersion and Self-Sensing (젖음성 시험과 전기-미세역학 시험법과 통한 단 카본섬유/산처리된 CNT-에폭시 나노복합재료의 분산과 자체-감지능)

  • Jang, Jung-Hoon;Wang, Zuo-Jia;GnidaKouong, Joel;Gu, Ga-Young;Park, Joung-Man;Lee, Woo-Il;Park, Jong-Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.10 no.2
    • /
    • pp.90-97
    • /
    • 2009
  • Dispersion and self-sensing evaluation for single-carbon fiber reinforced in three different acid-treated CNT-epoxy nanocomposites were investigated by electro-micromechanical techniques and wettability tests. Self-sensing based on contact resistivity exhibited more noise for single carbon fiber/acid-treated CNT-epoxy composites than it did for untreated CNT. However, the apparent modulus was higher the acid treated case than the untreated case which is attributed to better stress transfer. The interfacial shear strength (IFSS) between carbon fibers and the CNT-epoxy was lower than that between carbon fiber and neat epoxy due to the increased viscosity associated with the addition of the CNT. The CNT-epoxy nanocomposite exhibited more hydrophobicity than did neat epoxy. Change in the thermodynamic work of adhesion was consistent with changes in the IFSS but disproportional to that of the apparent modulus. The optimum condition of acid treatment on the need can be obtained instead of the maximum condition.

  • PDF

Properties of ZnO:Ga Transparent Conducting Film Fabricated on O2 Plasma-Treated Polyethylene Naphthalate Substrate (산소플라즈마 전처리된 Polyethylene Naphthalate 기판 위에 증착된 ZnO:Ga 투명전도막의 특성)

  • Kim, Byeong-Guk;Kim, Jeong-Yeon;Oh, Byoung-Jin;Lim, Dong-Gun;Park, Jae-Hwan;Woo, Duck-Hyun;Kweon, Soon-Yong
    • Korean Journal of Materials Research
    • /
    • v.20 no.4
    • /
    • pp.175-180
    • /
    • 2010
  • Transparent conducting oxide (TCO) films are widely used for optoelectronic applications. Among TCO materials, zinc oxide (ZnO) has been studied extensively for its high optical transmission and electrical conduction. In this study, the effects of $O_2$ plasma pretreatment on the properties of Ga-doped ZnO films (GZO) on polyethylene naphthalate (PEN) substrate were studied. The $O_2$ plasma pretreatment process was used instead of conventional oxide buffer layers. The $O_2$ plasma treatment process has several merits compared with the oxide buffer layer treatment, especially on a mass production scale. In this process, an additional sputtering system for oxide composition is not needed and the plasma treatment process is easily adopted as an in-line process. GZO films were fabricated by RF magnetron sputtering process. To improve surface energy and adhesion between the PEN substrate and the GZO film, the $O_2$ plasma pre-treatment process was used prior to GZO sputtering. As the RF power and the treatment time increased, the contact angle decreased and the RMS surface roughness increased significantly. It is believed that the surface energy and adhesive force of the polymer surfaces increased with the $O_2$ plasma treatment and that the crystallinity and grain size of the GZO films increased. When the RF power was 100W and the treatment time was 120 sec in the $O_2$ plasma pretreatment process, the resistivity of the GZO films on the PEN substrate was $1.05\;{\times}\;10^{-3}{\Omega}-cm$, which is an appropriate range for most optoelectronic applications.

A Study on Optimum Spark Plasma Sintering Conditions for Conductive SiC-ZrB2 Composites

  • Lee, Jung-Hoon;Ju, Jin-Young;Kim, Cheol-Ho;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.4
    • /
    • pp.543-550
    • /
    • 2011
  • Conductive SiC-$ZrB_2$ composites were produced by subjecting a 40:60 (vol%) mixture of zirconium diboride (ZrB2) powder and ${\beta}$-silicon carbide (SiC) matrix to spark plasma sintering (SPS). Sintering was carried out for 5 min in an argon atmosphere at a uniaxial pressure and temperature of 50 MPa and $1500^{\circ}C$, respectively. The composite sintered at a heating speed of $25^{\circ}C$/min and an on/off pulse sequence of 12:2 was denoted as SZ12L. Composites SZ12H, SZ48H, and SZ10H were obtained by sintering at a heating speed of $100^{\circ}C$/min and at on/off pulse sequences of 12:2, 48:8, and 10:9, respectively. The physical, electrical, and mechanical properties of the SiC-$ZrB_2$ composites were examined and thermal image analysis of the composites was performed. The apparent porosities of SZ12L, SZ12H, SZ48H, and SZ10H were 13.35%, 0.60%, 12.28%, and 9.75%, respectively. At room temperature, SZ12L had the lowest flexural strength (286.90 MPa), whereas SZ12H had the highest flexural strength (1011.34 MPa). Between room temperature and $500^{\circ}C$, the SiC-$ZrB_2$ composites had a positive temperature coefficient of resistance (PTCR) and linear V-I characteristics. SZ12H had the lowest PTCR and highest electrical resistivity among all the composites. The optimum SPS conditions for the production of energy-friendly SiC-$ZrB_2$ composites are as follows: 1) an argon atmosphere, 2) a constant pressure of 50 MPa throughout the sintering process, 3) an on/off pulse sequence of 12:2 (pulse duration: 2.78 ms), and 4) a final sintering temperature of $1500^{\circ}C$ at a speed of $100^{\circ}C$/min and sintering for 5 min at $1500^{\circ}C$.