• Title/Summary/Keyword: Contact Resistivity

Search Result 257, Processing Time 0.034 seconds

A Study on the Contact Power by Coating Material of Spray in AT Feeding Method (AT급전방식에서 코팅재에 의한 접촉전력에 대한 연구)

  • Kim, Min-Seok;Kim, Min-Kyu;Park, Yong-Gul;Lee, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.85-92
    • /
    • 2011
  • Main characteristic in railroad is the guided movement of the wheel by the track through a metal-to-metal contact, conferring to the rail vehicle a single degree of freedom. There are defects such as head check, shelling, corrugation, squats etc in surface of the rail by interface between the wheel and rail. These defects bring about reducing the life-cycle of rails and track components and increasing noises. In case of bad conditions, it is possible to happen to full-scale accident such as derailment. Recently, the track capacity has been increased for increasing speed and operation efficiency. So, maintenance and indirect cost have been increased. Currently, a coating method of rail construction is proposed by using the ceramics in Korea. Rails are used as the earth in electrical railroad systems. Currently traction return current is flowed through wheels of trains. In case of rails coated, problems are caused in the contact power between wheel and coating material of spray. In this paper, electric model is presented in the AT feeding method. In case of rails coated, electric model is presented. Also, standard resistance of the ceramic is demonstrated by contact power between wheel and coating material of spray.

The Characterization of the Resin Bonded Graphite Composite Bipolar Plate using Isotropic Graphite Powder for PEM Fuel Cell

  • Cho, Kwang-Youn;Riu, Doh-Hyung;Hui, Seung-Hun;Kim, Hong-Suk;Chung, Yoon-Jung;Lim, Yun-Soo
    • Carbon letters
    • /
    • v.8 no.4
    • /
    • pp.326-334
    • /
    • 2007
  • In this study, graphite composites were fabricated by warm press molding method to realize commercialization of PEM fuel cells. Graphite composites have been considered as alternative economic materials for bipolar plate of PEM fuel cells. Graphite powder that enables to provide electrical conductivity was selected as the main substance. The graphite powder was mixed with phenolic resin and the mixture was pressed using a warm press method. First of all, the graphite powder was pulverized with a ball mill for the dense packing of composite. As the ball milling time increases, the average size of particles decreases and the size distribution becomes narrow. This allows for improvement of the uniformity of graphite composite. However, the surface electrical resistivity of graphite composite increases as the ball milling time increases. It is due to that graphite particles with amorphous phase are generated on the surface due to the friction and collision of particles during pulverizing. We found that the contact electrical resistivity of graphite particles increases as the particle size decreases. The contact electrical resistivity of graphite powders was reduced due to high molding pressure by warm press molding. This leads to improvement of the mechanical properties of graphite composite. Hydrogen gas impermeability was measured with the graphite composite, showing a possibility of the application for bipolar plate in fuel cell. And, I-V curves of the graphite composite bipolar plate exhibit a similar performance to the graphite bipolar plate.

The characteristics of AlNd thin film for TFT-LCD bus line (TFT-LCD bus line용 AlNd 박막 특성에 관한 연구)

  • Dong-Sik Kim;Sung Kwan Kwak;Kwan Soo Chung
    • Journal of the Korean Vacuum Society
    • /
    • v.9 no.3
    • /
    • pp.237-241
    • /
    • 2000
  • The structural, electrical and etching characteristics of Al alloy thin film with low impurity concentrations AlNd deposited by using do magnetron sputtering deposition are investigated for the applications as gate bus line in the TFt-LCD panel. And ITO thin film was deposited on AlNd, then the contact resistance was measured by Kelvin resistor. The deposited thin films show the decrease of resistivity and the increase of grain size after the RTA at $300^{\circ}C$ for 20 min. Moreover, the resistivity of AlNd does not show appreciable grain size dependence after RTA. It is concluded that the decrease of resistivity after RTA is due to the increase of grain size. The annealed AlNd is found to be hillock free. The etching profiles of AlNd was good and the minimun contact resistance was about $110\;{\mu\Omega}cm$. Calculation results reveal that the AlNd (2wt.%) thin film can be applicable to 25" SXGA class TFT-LCD panels.

  • PDF

Hydrophobisity Recovery of PDMS Blended with Fluorinated Silicone Rubber Using Dynamic Contact Angle Measurement (동적 접촉각 측정을 이용한 실리콘고무 블렌드의 발수성회복 검토)

  • Lee, C.R.;Ryu, S.S.;Homma, H.;Izumi, K.
    • Proceedings of the KIEE Conference
    • /
    • 2001.11a
    • /
    • pp.6-8
    • /
    • 2001
  • This report describes the effect of the blending of poly(trifluoropropylmethylvinylsiloxane) (PTFPMVS) with poly(dimethylsiloxane) (PDMS) on the surface properties such as water repellency using dynamic contact angle (DCA) measurement. We have investigated the surface molecular mobility of the PDMS/PTFPMVS blends via a DCA measurement and an adhesion tension relaxation. It could be shown that a flexible side-chain segment in PTFPMVS having higher surface energy, could be reoriented easily in water to decrease the interfacial tension of the polymer/water interface, which seems to play a major role at the decrease of the receding contact angle and the surface resistivity of PDMS/PTFPMVS blends.

  • PDF

Surface Properties of Epoxy Composites by Plasma Treatment (플라즈마처리에 따른 에폭시 복합재료의 표면특성)

  • 임경범;이백수;이덕출
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.14 no.10
    • /
    • pp.821-827
    • /
    • 2001
  • In this study performed to identify a degradation mechanism in macromolecular insulating material, the contact angel, surface potential decay, surface resistivity, and XPS analysis were compared after exposure of FRP laminate to plasma discharge. In the case of contact angle, the surface of specimen untreated showed weak hydrophobic property of 73。. However, the contact angle was decreased to 20。in the plasma-treated specimen. In the case of chemical changes arising form plasma treatment, carboxl radicals were generated mainly in the surface treated, which was rapidly changed to the hydrophilic one. In the corona potential decay study to determine the electrical changes of the surface, positive charges were rapidly decreased when compared with negative charges, leading to negative property in the surface of specimen not treated. However, in the case of the hydrophilic surface, lots of carboxl radicals acting as positive polarity were generated, resulting in positive surface. Owing to such positive surface, charges of negative polarity applied were rapidly decreased.

  • PDF

Selective Catalytic Etching of Graphene by SiOx Layer Depletion

  • Lee, Gyeong-Jae;Im, Gyu-Uk;Yang, Mi-Hyeon;Gang, Tae-Hui;Jeong, Seok-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.163.2-163.2
    • /
    • 2014
  • We report catalytic decomposition of few-layer graphene on an $Au/SiO_x/Si$ surface wherein oxygen is supplied by dissociation of the native $SiO_x$ layer at a relatively low temperature of $400^{\circ}C$. The detailed chemical evolution of the graphene covered $SiO_x/Si$ surface with and without gold during the catalytic process is investigated using a spatially resolved photoelectron emission method. The oxygen atoms from the native $SiO_x$ layer activate the gold-mediated catalytic decomposition of the entire graphene layer, resulting in the formation of direct contact between the Au and the Si substrate. The notably low contact resistivity found in this system suggests that the catalytic depletion of a $SiO_x$ layer could realize a new way to micromanufacture high-quality electrical contact.

  • PDF

A study of ohmic contacts to p-GaN

  • 장자순;장인식;성태연;장홍규;박성주
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.103-104
    • /
    • 1998
  • GaN is a ppromising materials fot applications in the blue/ultraviolet (UV) light emitting diodes (LEDs)[1] and laser diodes (LDs) [2] High quality ohmic contacts are very critical to these applications since the qualities of ohmic contact system pplay an impportant roles in the high efficient device opperations. For the n-GaN there have been many repports about ohmic contacts and the sppecific contact resistance were as low as from 10-8$\Omega$cm2 However for the ohmic contacts on pp-GaN much fewer study were repported and the sppecific contact resistivity was much lower than of n-GaN. In this ppapper we repport a new Ni/ppt/Au metallization scheme and discuss the mechanism of ohmic formation

  • PDF

The Properties of Alloyed Ohmic Contact to p-InP (p-InP의 저항성 합금 접촉 특성 연구)

  • 이중기;박경현;한정희;이용탁
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.4
    • /
    • pp.555-562
    • /
    • 1990
  • Alloyed ohmic contact properties of Au-Zn/Au, Au-Be/Au,Au-Zn/Cr/Au, and Au-Be/Cr/Au metal system to p-InP were investigated. Optimum alloying conditions were obtained at the annealing temperature of 425\ulcorner for all the metal systems using a rapid thermal annealing system. Surface AES analysis and auger depth profiling were done for each metal system annealed at the optimum conditions. Outdiffusions of In and P from the InP substrate were found in the metal systems without Cr intermediate layer. Also, small amount of In. P and Cr were detected at the surface in the case of Au-Zn/Cr/Au system, while there were occured no outdiffusion of In, P, and Cr for Au-Be/Cr/Au system. The best surface morpholoty and specific contact resistivity of 4.5x 10**-5 \ulcornercm\ulcornerhave been obtained in this Au-Be/Cr/Au material system alloyed at 425\ulcorner for 60 second.

  • PDF

Doping-level dependent dry-etch damage of in n-type GaN (n형 GaN의 doping 농도에 따르는 건식 식각 손상)

  • Lee, Ji-Myon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.417-420
    • /
    • 2004
  • The electrical effects of dry-etch on n-type GaN by an inductively coupled $Cl_2/CH_4/H_2/Ar$ plasma were investigated as a function of ion energy, by means of ohmic and Schottky metallization method. The specific contact resistivity(${\rho}_c$) of ohmic contact was decreased, while the leakage current in Schottky diode was increased with increasing ion energy due to the preferential sputtering of nitrogen. At a higher rf power, an additional effect of damage was found on the etched sample, which was sensitive to the dopant concentration in terms of the ${\rho}_c$ of ohmic contact. This was attributed to the effects such as the formation of deep acceptor as well as the electron-enriched surface layer within the depletion layer. Furthermore, thermal annealing process enhanced the ohmic and Schottky property of heavily damaged surface.

  • PDF

Electrical Properties of TiO2 Thin Film and Junction Analysis of a Semiconductor Interface

  • Oh, Teresa
    • Journal of information and communication convergence engineering
    • /
    • v.16 no.4
    • /
    • pp.248-251
    • /
    • 2018
  • To research the characteristics of $TiO_2$ as an insulator, $TiO_2$ films were prepared with various annealing temperatures. It was researched the currents of $TiO_2$ films with Schottky barriers in accordance with the contact's properties. The potential barrier depends on the Schottky barrier and the current decreases with increasing the potential barrier of $TiO_2$ thin film. The current of $TiO_2$ film annealed at $110^{\circ}C$ was the lowest and the carrier density was decreased and the resistivity was increased with increasing the hall mobility. The Schottky contact is an important factor to become semiconductor device, the potential barrier is proportional to the hall mobility, and the hall mobility increased with increasing the potential barrier and became more insulator properties. The reason of having the high mobility in the thin films in spite of the lowest carrier concentration is that the conduction mechanism in the thin films is due to the band-to-band tunneling phenomenon of electrons.