• Title/Summary/Keyword: Contact Noise

Search Result 613, Processing Time 0.027 seconds

A Study on the dynamic behavior of rail due to diped joints (레일이음매에서 발생되는 궤도동적거동에 대한 연구)

  • Kang, Yun-Suk;Yang, Shin-Chu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.337.2-337
    • /
    • 2002
  • When vehicle travelling along the track which has irregularity such as vortical profile, dynamic forces arise at the Wheel/Rail contact patch by wheel/rail interaction. In particular short wavelength irregularities on dipped joint and small stiffness of connecting rail bring about intense wheel/rail dynamic effects at higher speed. In the paper, a new model for dipped joint rail is developed to study dynamic behavior of track. (omitted)

  • PDF

Analysis and Test for Pantograph of High Speed Rolling Stock HSR 350x (고속전철용 판토그라프 설계 및 시험평가)

  • 박수홍;정경렬;김휘준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.160-169
    • /
    • 2003
  • Pantograph of high speed rolling stock is one of the key components that transfer of associated technologies was blocked fundamentally from advanced nations. In this study, main technologies related to development of prototype pantograph installed on prototype test train developed according to the project "Development of high speed railway technology" are presented. Status of current korean technologies is explained by presenting developed technologies and applications during the past 6 years from concept design to test and evaluation.

  • PDF

Experimental study on vibration transfer characteristics of automotive seats (자동차 의자류의 진동 전달특성에 대한 실험적 연구)

  • 정완섭;우춘규;박세진;김수현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.365-370
    • /
    • 1996
  • This paper introduces experimental results of whole-body vibration exposed through the contact area between automotive seat and human body. Such vibration experiment was carried out for five automotive seats in use and four Korean individuals. Interestingly, the quantitative assessment of the ride values of the tested seats do not only enable us to judge the footnotes the Korean technology in automotive seat has left so far, but also lead to the systematic way of improving their ride quality, in addition in Korean automotive seats raised in this paper.

  • PDF

Analysis of Impact Responses Considering Sensor Dynamics (센서 동역학을 고려한 충격응답해석)

  • B. J. Ryu;K. Y. Ahn;B. H. Kwon;I. S. Oh;Lee, G. S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.373.1-373
    • /
    • 2002
  • Impact is the most common type of dynamic loading conditions that give rise to impulsive forces and affects the vibrational characteristics of mechanical systems. Since the impact force and response are measured indirectly through the sensors, it is difficult to predict the impact force and acceleration. In this study, contact force model based on the Hertz law is proposed in order to predict the impact force correctly. (omitted)

  • PDF

The Noise Reduction of a DC Motor Using Multi-body Dynamics

  • Jung Il-Ho;Seo Jong-Hwi;Choi Sung-Jin;Park Tae-Won;Chai Jang-Bom
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.336-342
    • /
    • 2005
  • The DC motor of a vehicle may cause noise and vibration due to high-speed revolution, which can make a driver feel uncomfortable. There have been various studies attempting to solve these problems, mostly focusing on the causes of noise and vibration and a means of preventing them. The CAE methodology is more efficient than a real test for the purpose of looking for various design parameters to reduce the noise and vibration of the DC motor. In this study, a design process for reducing brush noise is presented with the use of a computer model, which is made by using a multi-body dynamics program (DADS). The design parameters to reduce the brush noise and vibration were proposed using a computer model. They were used to reduce the noise and vibration of the DC motor and verified by the test results of the fan DC motor in the vehicle. This method may be applicable to various DC motors.

The Noise Reduction of A DC Motor Using Multi-body Dynamics (다물체 동역학을 이용한 DC 모터 소음 저감에 관한 연구)

  • Jung, Il-Ho;Park, Tae-Won;Park, Ji-Yeon
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.875-880
    • /
    • 2004
  • The DC Motor of a vehicle may cause noise and vibration due to high-speed revolution, which can make a driver feel uncomfortable. There have been various studies that attempted to solve these problems, mostly focusing on the causes of noise and vibration and the means of preventing them. The CAE methodology is more efficient than a real test for the purpose of looking for various design parameters to reduce the noise and vibration of the DC motor. In this study, a design process for reducing brush noise is presented with the use of a computer model, which is made by using a multi-body dynamics program (DADS). The design parameters to reduce the brush noise and vibration were proposed using a computer model. They were used to reduce the noise and vibration of a DC motor and verified by the test results of a fan DC motor in a vehicle. This method may be applicable to various DC motors.

  • PDF

Investigation of Brake Squeal with Contact Stiffness Variation Using Experiment and FE Simulation (패드 접촉강성 변화에 따른 FE스퀼해석법 및 실험 검증)

  • Park, Kiwan;Nam, Jaehyeon;Kang, Jaeyoung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.345-352
    • /
    • 2017
  • In this study, squeal noise with respect to pressure variation is measured by a lab-scaled brake dynamometer and estimated by a complex finite element (FE) eigenvalue analysis. From the FE eigenvalue sensitivity analysis, unstable frequencies occur due to a mode-coupling mechanism and are found to change with variation in contact stiffness. In the experiment, squeal frequencies near 1 kHz, 2.5 kHz, 3.5 kHz, and 4 kHz are increased with pressure variation. The sensitivity of squeal modes to contact stiffness variation obtained from the FE analysis is shown to approximate the variation of squeal frequencies under pressure variation in the experiment.

Vibration Characteristics of the PWR Fuel Rod Supported by New Doublet Spacer Grids (새이중판 지지격자로 지지된 경수로용 연료봉의 진동특성)

  • 최명환;강흥석;윤경호;김형규;송기남
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.905-910
    • /
    • 2003
  • One of the methods that are used to compare and verify the supporting performance of the spacer grids developed is the vibration characteristic test. A modal test in this paper is performed for a dummy rod 3,847mm tall supported by eight New Doublet (ND) spacer grids. For the vibration test in air, nine accelerometers, one displacement sensor and one shaker are used for acquiring signals, and an I-DEAS TDAS software is employed for analyzing the signals. Also, a finite element (FE) analysis is performed by a beam-spring simple model and a contact model simulating the contact phenomenon between the rod and the fm spring. And then, the result of the FE analysis is compared with that of the modal test. The natural frequencies as well as the mode shapes calculated by the proposed contact models have a greater similarity to the test results than those by the previous beam-spring model. In addition, for grasping whether or not the modal parameters are influenced by where shaking spot is, two kinds of tests are performed; one is for the shaker attached at the fourth span (center), the other is for the shaker at the fifth span that is one span nearer to the bottom of the rod. The latter shows higher MAC than the former. Finally, the vibration displacements are measured in the range of 0.112-0.214mm for the excitation force of 0.25-0.75 N.

  • PDF

A Finite Element Analysis of Elastomeric O-ring Performance and Structure when subjected to Foreign Objects (유한요소해석을 이용한 이물질이 고무오링과 구조물에 미치는 영향과 성능 연구)

  • Pack, Inseok;Rhee, Heejang;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.28-34
    • /
    • 2017
  • Elastomeric o-ring performance and structure when subjected to a foreign object is studied using finite element analysis (FEA). Elastomeric o-rings have been studied using 2D analysis for a long time. Contact pressure is an important factor in o-ring design. When contact pressure is lower than applied pressure, leaking, vibration, and noise can occur; resulting in decreased output. In this study, we compared 2D and 3D analyses of elastomeric o-rings. Similar results were shown for 2D and 3D contact pressure. However, when an o-ring encounters foreign object matter, 3D analysis is required because contact pressure in every direction needs to be considered. We determined the influence of foreign matter on o-ring performance and structure by analyzing 10 cases with different clearances in a 3D model. Therefore, an o-ring encountering foreign object matter must be analyzed in 3D with the result included in the o-ring design.

Development of Contact Force Measurement Algorithm for a 3D Printing-type Flexible Tactile Sensor (3D 프린팅 방식 유연 촉각센서의 접촉력 측정 알고리즘 개발)

  • Jeong, Kyeong-Hwa;Lee, Ju-Kyoung;Lee, Suk;Lee, Kyung-Chang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.583-588
    • /
    • 2015
  • Flexible tactile sensors can provide valuable feedback to intelligent robots regarding the environment around them. This is especially important when robots such as, service robots share a workspace with humans. This paper presents a contact force measurement algorithm of a flexible tactile sensor. This sensor is manufactured by a direct-writing technique, which is one 3D printing method, using multi-walled carbon nano-tubes. An analog signal processing circuit has been designed and implemented to reduce noise contained in the sensor output. In addition, a digital version of the Butterworth filter was implemented by software running on a microcontroller. Through various experiments, characteristics of the sensor system have been identified. Based on three traits, an algorithm to detect the contact and measure the contact force has been developed. The entire system showed a promising prospect to detect the contact over a large and curved area.