• Title/Summary/Keyword: Contact Material

Search Result 2,529, Processing Time 0.028 seconds

THREE DIMENSIONAL FINITE ELEMENT ANALYSIS OF MANDIBULAR STRESSES OF COMPLETE DENTURE OCCLUSION (하악 총의치 교합형태에 따른 하부조직에 미치는 교합력 양태의 3차원적 유합요소법 해석)

  • Lee Young-Soo;Yoo Kwang-Hee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.30 no.2
    • /
    • pp.286-318
    • /
    • 1992
  • The objective of preventive dentistry is the maintenance of a healthy dentition for the life of a patient. Unfortunately, if an individual has not received the benefit of a comprehensive program of preventive dentistry and has finally reached the edentulous state, as a consequence, he receives a set of complete denture. Dentures are mechanical devices and subject to the principles of mechanics. In some cases, the general health and nutritional status of the patient are felt to be the causative factors. But, the most important thing in residual ridge resorption is felt to be caused by the unequal distribution of functional forces. This study was to analyze mandibular stresses of complete denture occlusion by three dimensional finite element method. The results were as follows ; 1. As deformation and stress distribution of the complete denture of the mandible were concentrated on the upper lingual side of the mandible, alveolar ridge resorption of the mandible occurred from lingual side to labio-buccal side. 2. Analyzing by three dimensional F. E. M., the mandible is a very effective form for tolerating stress and deformation biomechanically. 3. According to the concentration of stress distibution in the upper buccal side of the lower posteriors, buccal shelf area must be a primary stress bearing area in the lower complete denture. 4. Lower complete denture moved horizontally to the balancing side under lateral occlusal force. 5. Bilateral balanced occlusion should be constructed in the complete denture for denture stability, especially in the protrusive movement. 6. Physical property of the denture base material was as important for stress distribution in the denture base as or even more than that in the mandible. 7. Impression technique is very important because of most of stress was concentrated between them due to close contact of the mandible and the denture base.

  • PDF

Highly Reliable Solder ACFs FOB (Flex-on-Board) Interconnection Using Ultrasonic Bonding

  • Kim, Yoo-Sun;Zhang, Shuye;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.22 no.1
    • /
    • pp.35-41
    • /
    • 2015
  • In this study, in order to improve the reliability of ACF interconnections, solder ACF joints were investigated interms of solder joint morphology and solder wetting areas, and evaluated the electrical properties of Flex-on-Board (FOB) interconncections. Solder ACF joints with the ultrasonic bonding method showed excellent solder wetting by broken solder oxide layers on solder surfaces compared with solder joints with remaining solder oxide layer bonded by the conventional thermo-compression (TC) bonding method. When higher target temperature was used, Sn58Bi solder joints showed concave shape due to lower degree of cure of resin at solder MP by higher heating rate. ACFs with epoxy resins and SAC305 solders showed lower degree of resin cure at solder MP due to the slow curing rate resulting in concave shaped solder joints. In terms of solder wetting area, solder ACFs with $25-32{\mu}m$ diameters and 30-40 wt% showed highest wetted solder areas. Solder ACF joints with the concave shape and the highest wetting area showed lower contact resistances and higher reliability in PCT results than conventional ACF joints. These results indicate that solder morphologies and wetting areas of solder ACF joints can be controlled by adjustment of bonding conditions and material properties of solder and polymer resin to improve reliability of ACF joints.

Initial bacterial adhesion on resin, titanium and zirconia in vitro

  • Lee, Byung-Chul;Jung, Gil-Yong;Kim, Dae-Joon;Han, Jung-Suk
    • The Journal of Advanced Prosthodontics
    • /
    • v.3 no.2
    • /
    • pp.81-84
    • /
    • 2011
  • PURPOSE. The aim of this in vitro study was to investigate the adhesion of initial colonizer, Streptococcus sanguis, on resin, titanium and zirconia under the same surface polishing condition. MATERIALS AND METHODS. Specimens were prepared from Z-250, cp-Ti and 3Y-TZP and polished with $1 {\mu}m$ diamond paste. After coating with saliva, each specimen was incubated with Streptococcus sanguis. Scanning electron microscope, crystal violet staining and measurement of fluorescence intensity resulting from resazurin reduction were performed for quantifying the bacterial adhesion. RESULTS. Surface of resin composite was significantly rougher than that of titanium and zirconia, although all tested specimens are classified as smooth. The resin specimens showed lower value of contact angle compared with titanium and zirconia specimens, and had hydrophilic surfaces. The result of scanning electron microscopy demonstrated that bound bacteria were more abundant on resin in comparison with titanium and zirconia. When total biofilm mass determined by crystal violet, absorbance value of resin was significantly higher than that of titanium or zirconia. The result of relative fluorescence intensities also demonstrated that the highest fluorescence intensity was found on the surface of resin. Absorbance value and fluorescence intensity on titanium was not significantly different from those on zirconia. CONCLUSION. Resin specimens showed the roughest surface and have a significantly higher susceptibility to adhere Streptococcus sanguis than titanium and zirconia when surfaces of each specimen were polished under same condition. There was no significant difference in bacteria adhesion between titanium and zirconia in vitro.

Stress distribution in premolars restored with inlays or onlays: 3D finite element analysis

  • Yang, Hongso;Park, Chan;Shin, Jin-Ho;Yun, Kwi-Dug;Lim, Hyun-Pil;Park, Sang-Won;Chung, Hyunju
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.3
    • /
    • pp.184-190
    • /
    • 2018
  • PURPOSE. To analyze stress distribution in premolars restored with inlays or onlays using various materials. MATERIALS AND METHODS. Three-dimensional maxillary premolar models of abutments were designed to include the following: 1) inlay with O cavity (O group), 2) inlay with MO cavity (MO group), 3) inlay with MOD cavity (MOD group), and 4) onlay (ONLAY group). A restoration of each inlay or onlay cavity was simulated using gold alloy, e.max ceramic, or composite resin for restoration. To simulate masticatory forces, a total of 140 N static axial force was applied onto the tooth at the occlusal contact areas. A finite element analysis was performed to predict the magnitude and pattern of stresses generated by occlusal loading. RESULTS. Maximum von Mises stress values generated in the abutment teeth of the ONLAY group were ranged from 26.1 to 26.8 MPa, which were significantly lower than those of inlay groups (O group: 260.3-260.7 MPa; MO group: 252.1-262.4 MPa; MOD group: 281.4-298.8 MPa). Maximum von Mises stresses generated with ceramic, gold, and composite restorations were 280.1, 269.9, and 286.6 MPa, respectively, in the MOD group. They were 252.2, 248.0, 255.1 MPa, respectively, in the ONLAY group. CONCLUSION. The onlay design (ONLAY group) protected tooth structures more effectively than inlay designs (O, MO, and MOD groups). However, stress magnitudes in restorations with various dental materials exhibited no significant difference among groups (O, MO, MOD, ONLAY).

Shear bond strength of composite resin to high performance polymer PEKK according to surface treatments and bonding materials

  • Lee, Ki-Sun;Shin, Myoung-Sik;Lee, Jeong-Yol;Ryu, Jae-Jun;Shin, Sang-Wan
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.350-357
    • /
    • 2017
  • PURPOSE. The object of the present study was to evaluate the shear bonding strength of composite to PEKK by applying several methods of surface treatment associated with various bonding materials. MATERIALS AND METHODS. One hundred and fifty PEKK specimens were assigned randomly to fifteen groups (n = 10) with the combination of three different surface treatments (95% sulfuric acid etching, airborne abrasion with $50{\mu}m$ alumina, and airborne abrasion with $110{\mu}m$ silica-coating alumina) and five different bonding materials (Luxatemp Glaze & Bond, Visio.link, All-Bond Universal, Single Bond Universal, and Monobond Plus with Heliobond). After surface treatment, surface roughness and contact angles were examined. Topography modifications after surface treatment were assessed with scanning electron microscopy. Resin composite was mounted on each specimen and then subjected to shear bond strength (SBS) test. SBS data were analyzed statistically using two-way ANOVA, and post-hoc Tukey's test (P<.05). RESULTS. Regardless of bonding materials, mechanical surface treatment groups yielded significantly higher shear bonding strength values than chemical surface treatment groups. Unlike other adhesives, MDP and silane containing self-etching universal adhesive (Single Bond Universal) showed an effective shear bonding strength regardless of surface treatment method. CONCLUSION. Mechanical surface treatment behaves better in terms of PEKK bonding. In addition, self-etching universal adhesive (Single Bond Universal) can be an alternative bonding material to PEKK irrespective of surface treatment method.

Stability Improvement of Esomeprazole Magnesium Dihydrate Enteric-Coated Tablet by Adding Alkalizing Agents (에스오메프라졸 마그네슘 이수화물을 함유하는 장용성 제제의 안정성 개선)

  • Cho, Young Ho;Jeon, Hyo Bin;Lee, Jong-Hwa;Lee, Gye Won
    • KSBB Journal
    • /
    • v.32 no.2
    • /
    • pp.108-116
    • /
    • 2017
  • Omeprazole, a benzimidazole derivative, suppresses gastric acid secretion by inhibiting $H^+/K^+$ ATPase in gastric parietals cells, and by reducing $H^+$ concentration. To improve stability of esomeprazole magnesium dihydrate (ESMD), enteric-coated preperation was composed of core tablet, subcoating and enteric coating layer. We were evaluated in vitro dissolution characteristics between test and reference ESMD preparation and stability. We could prepare enteric-coated formulation of ESMD by controlling disintegrating agent and coating ratio which could rapidly dissolved in neutral or alkali medium. The formulation D5 with crospovidone of 1.25% and coating ratio of 16.25% had a similar dissolution behavior compare to reference preparation. Difference factor ($f_1$) and similarity factor ($f_2$) were 0~15 and 50~100 and there was no significant difference in bioequivalence between formulations. The content and dissolution rate of formulation D5 were $96.54{\pm}0.21$ and $78.56{\pm}0.87%$ without change of color in accelerated condition ($40^{\circ}C$, RH 75%, high density polyethylene (HDPE) container) for 6 months. This study concluded that our enteric coated preparation of ESMD could be an useful method to improve stability of unstable drug without direct contact with coating material.

Hardness and EDM Processing of MoSi$_2$Intermetallics for High Temperature Ship Engine (고온선박엔진용 MoSi$_2$금속간화합물의 경도와 방전가공특성)

  • 윤한기;이상필
    • Journal of Ocean Engineering and Technology
    • /
    • v.16 no.6
    • /
    • pp.60-64
    • /
    • 2002
  • This paper describes the machining characteristics of the MoSi$_2$--based composites through the process of electric discharge drilling with various tubular electrodes. In addition to hardness characteristics, microstructures of Nb/MoSi$_2$laminate composites were evaluated from the variation of fabricating conditions, such as preparation temperature, applied pressure, and pressure holding time. MoSi$_2$-based composites have been developed in new materials for jet engines of supersonic-speed airplanes and gas turbines for high-temperature generators. These high performance engines may require new hard materials with high strength and high temperature-resistance. Also, with the exception of grinding, traditional machining methods are not applicable to these new materials. Electric discharge machining (EDM) is a thermal process that utilizes a spark discharge to melt a conductive material. The tool electrode is almost -unloaded, because there is n direct contact between the tool electrode and the work piece. By combining a non-conducting ceramic with more conducting ceramic, it was possible to raise the electrical conductivity. From experimental results, it was found that the lamination from Nb sheet and MoSi$_2$ powder was an excellent strategy to improve hardness characteristics of monolithic MoSi$_2$. However, interfacial reaction products, like (Nb, Mo)SiO$_2$and Nb$_2$Si$_3$formed at the interface of Nb/MoSi$_2$, and increased with fabricating temperature. MoSi$_2$composites, with which a hole drilling was not possible through the conventional machining process, enhanced the capacity of ED-drilling by adding MbSi$_2$, relative to that of SiC or ZrO$_2$reinforcements.

A Study on the Assembly Process and Reliability of COF (Chip-On-Flex) Using ACFs (Anisotropic Conductive Films) for CCM (Compact Camera Module) (ACF를 이용한 CCM (Compact Camera Module)용 COF(Chip-On-Flex) 실장 기술 및 신뢰성 연구)

  • Chung, Chang-Kyu;Paik, Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.15 no.2
    • /
    • pp.7-15
    • /
    • 2008
  • In this paper, the Chip-On-Flex (COF) assembly process using anisotropic conductive films (ACFs) was investigated and the reliability of COF assemblies using ACFs was evaluated. Thermo-mechanical properties of ACFs such as coefficient of thermal expansion (CTE), storage modulus (E'), and glass transition temperature $(T_g)$ were measured to investigate the effects of ACF material properties on the reliability of COF assemblies using ACFs. In addition, the bonding conditions for COF assemblies using ACFs such as time, temperature, and pressure were optimized. After the COF assemblies using ACFs were fabricated with optimized bonding conditions, reliability tests were then carried out. According to the reliability test results, COF assemblies using the ACF which had lower CTE and higher $T_g$ showed better thermal cycling reliability. Consequently, thermo-mechanical properties of ACFs, especially $T_g$, should be improved for high thermal cycling reliability of COF assemblies using ACFs for compact camera module (CCM) applications.

  • PDF

Characteristics of Percutaneous Absorption for Three Kinds of Phthalate (Phthalate 3종에 대한 경피투과 특성 연구)

  • Jung, Duck-Chae;Yoon, Cheol-Hun;Um, Mi-Sun;Hwang, Hyun-Suk;Baek, Jung-Hun;Choi, Jin-Ho
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.4
    • /
    • pp.360-368
    • /
    • 2013
  • Objectives: Phthalates are used in a large variety of products including as coatings of pharmaceutical tablets, film formers, stabilizers, dispersants, emulsifying agents, and suspending agents. They have been the subject of great public concern in recent years. The extensive uses of this material have attracted attention and issues regarding its safety have been raised. Methods: In this study, three types of phthalate skin permeation were studied using matrixes such as ointments, creams and lotions in vitro. The absorption of phthalate diesters [Dimethyl phthalate (DMP), Di-n-propyl phthalate (DPP) and Di-n-pentyl phthalate (DNPP)] using film former has been measured in vitro through rat skin. Epidermal membranes were set up in Franz diffusion cells and their permeability to PBS measured in order to establish the integrity of the skin before the phthalates were applied to the epidermal surface. Results: Absorption rates for each phthalate ester were determined and permeability assessment made to quantify any irreversible alterations in barrier function due to contact with the esters. Types of phthalate in vitro experimental results quickly appeared in the following order DMP > DPP ${\geq}$ DNPP. Conclusions: In the experimental results, lotion> cream> ointment, and the permeation rate of lotion with a great amount of moisture was the fastest. Skin permeation rate is generally influenced by the chemical characteristics of a given chemical, such as molecular weight and lipophilicity. As the esters became more lipophilic and less hydrophilic, the rate of absorption decreased.

Effect of Hybrid Yarn Structure Composed of PP/Tencel/Quick dry PET on the Physical Property of Fabric for High Emotional Garment (PP/Tencel/흡한속건PET/하이브리드 복합사 구조가 고감성 의류용 직물의 물성에 미치는 영향)

  • Kim, Hyun Ah;Son, Hwang;Kim, Seung Jin
    • Fashion & Textile Research Journal
    • /
    • v.17 no.3
    • /
    • pp.462-475
    • /
    • 2015
  • This paper investigated the characteristics of the physical properties of woven fabrics according to the yarn structure and fibre property. It was found that wicking property of woven fabrics made of sheath/core hybrid yarn were better than those of siro spun and siro-fil hybrid yarns, which was caused by platform for transport of moisture vapor by filaments on the core part of sheath core hybrid yarns. In drying property, the fabric specimen woven by PP/Tencel sheath core hybrid yarns as a warp and Coolmax/Tencel spun yarn as a weft showed quick drying property, which was caused by the sheath core hybrid yarn structure as drainage of water moisture and coolmax fibre characteristics as quick dry material. Concerning to breathability and thermal conductivity as heat transport phenomena, it was observed that breathability of fabrics woven with hybrid yarns such as sheath core and siro-fil in the warp and hi-multi filaments in the weft showed the lowest water vapor resistance, which was explained as due to for air gap in the fibres of the spun yarns to restrict the wet heat transport from perspiration vapor. Thermal conductivities of the fabrics woven with PET/Tencel siro-fil yarns in the weft and hybrid yarns such as sheath core and siro-fil in the warp revealed the highest values, which was observed as due to higher thermal conductivity of PET than PP and more contact point between fibres in the siro-fil and sheath core hybrid yarns.