• 제목/요약/키워드: Contact Load

검색결과 1,211건 처리시간 0.028초

탄성변형을 고려한 윤활 상태에서 거친 표면의 미끄럼 접촉온도 해석 (Temperature Rise Analysis of Sliding Contact Surfaces in Lubrication Considering Elastic Deformation)

  • 조용주;김병선;이상돈
    • Tribology and Lubricants
    • /
    • 제22권3호
    • /
    • pp.137-143
    • /
    • 2006
  • The sliding contact interface of machine components such as bearings, gears frequently operates in lubrication at the inception of sliding failure under high loads, speed and slip. The surface temperature at the interface of bodies in a sliding contact is one of the most important factors influencing the behavior of machine components. Most surface failure in sliding contact region result from frictional heat generation. However, it is difficult to measure temperature rise experimentally. So the calculation of the surface temperature at a sliding contact interface has long been an interesting and important subject for tribologist. The surface temperature rise is related in contact pressure, sliding speed, material properties and lubrication thickness. Though roughness, load, ect all of the condition, are same, film thickness varies with velocity. In this study, surface temperature rise due to frictional heating in lubrication is calculated with various velocities. Surface film shearing and dry solid asperity contact are used to simulate the change of frictional heat in lubricated contact

Application of artificial neural networks to a double receding contact problem with a rigid stamp

  • Cakiroglu, Erdogan;Comez, Isa;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • 제21권2호
    • /
    • pp.205-220
    • /
    • 2005
  • This paper presents the possibilities of adapting artificial neural networks (ANNs) to predict the dimensionless parameters related to the maximum contact pressures of an elasticity problem. The plane symmetric double receding contact problem for a rigid stamp and two elastic strips having different elastic constants and heights is considered. The external load is applied to the upper elastic strip by means of a rigid stamp and the lower elastic strip is bonded to a rigid support. The problem is solved under the assumptions that the contact between two elastic strips also between the rigid stamp and the upper elastic strip are frictionless, the effect of gravity force is neglected and only compressive normal tractions can be transmitted through the interfaces. A three layered ANN with backpropagation (BP) algorithm is utilized for prediction of the dimensionless parameters related to the maximum contact pressures. Training and testing patterns are formed by using the theory of elasticity with integral transformation technique. ANN predictions and theoretical solutions are compared and seen that ANN predictions are quite close to the theoretical solutions. It is demonstrated that ANNs is a suitable numerical tool and if properly used, can reduce time consumed.

CONTACT PRESSURE DISTRIBUTION OF RADIAL TIRE IN MOTION WITH CAMBER ANGLE

  • 김석남
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 추계학술대회논문집A
    • /
    • pp.387-394
    • /
    • 2000
  • Theoretical and experimental study is conducted on the contact pressure distribution of a radial tire in motion under various camber angles. Tire construction is modelled by a spring bedded elastic ring, consisted of sidewall springs and a composite belt ring. The contact area is assumed to be a trapezoidal shape varying with camber angles and weighted load. The basic equation in a quasi-static form is derived for the deformation of a running belt with a constant velocity by the aid of Lagrange-Euler transformation. Galerkin's method and stepwise calculation are applied for solving the basic equation and the mechanical boundary condition along both sides of the contact belt part subjected to shearing forces transmitted from the sidewall spring. Experimental results on the contact pressure, measured by pressure sensors embedded in the surface of the drum tester, correspond well with the calculated ones for the test tire under various camber angles, running velocities and weighted loads. These results indicate that a buckling phenomenon of the contact belt in the widthwise direction occurs due to the effect of camber angle.

  • PDF

Frictionless contact problem for a layer on an elastic half plane loaded by means of two dissimilar rigid punches

  • Ozsahin, Talat Sukru
    • Structural Engineering and Mechanics
    • /
    • 제25권4호
    • /
    • pp.383-403
    • /
    • 2007
  • The contact problem for an elastic layer resting on an elastic half plane is considered according to the theory of elasticity with integral transformation technique. External loads P and Q are transmitted to the layer by means of two dissimilar rigid flat punches. Widths of punches are different and the thickness of the layer is h. All surfaces are frictionless and it is assumed that the layer is subjected to uniform vertical body force due to effect of gravity. The contact along the interface between elastic layer and half plane will be continuous, if the value of load factor, ${\lambda}$, is less than a critical value, ${\lambda}_{cr}$. However, if tensile tractions are not allowed on the interface, for ${\lambda}$ > ${\lambda}_{cr}$ the layer separates from the interface along a certain finite region. First the continuous contact problem is reduced to singular integral equations and solved numerically using appropriate Gauss-Chebyshev integration formulas. Initial separation loads, ${\lambda}_{cr}$, initial separation points, $x_{cr}$, are determined. Also the required distance between the punches to avoid any separation between the punches and the layer is studied and the limit distance between punches that ends interaction of punches, is investigated. Then discontinuous contact problem is formulated in terms of singular integral equations. The numerical results for initial and end points of the separation region, displacements of the region and the contact stress distribution along the interface between elastic layer and half plane is determined for various dimensionless quantities.

저낙차용 수차의 동력전달 스프로켓 휠 이의 하중분포 해석 (Load distribution analysis of a sprocket wheel tooth for a low head hydro-turbine power transmission system)

  • 강용석;김현수;김현진
    • 대한기계학회논문집
    • /
    • 제18권5호
    • /
    • pp.1087-1095
    • /
    • 1994
  • Chain drive power transmission system was developed for a low head hydro-turbine which generates power by energy transformation on the turbine blades attached to chains. Also, experimental and theoretical analysis for the sprocket wheel tooth load distribution were performed. The tooth load was measured by the specially designed load sensor. It was found that the tooth load distribution for the steady state operation was in good accordance with the quasi-static state results showing the peak load at the final meshing tooth. The trend of the experimental results agreed with the theoretical results based on the spring model analysis and difference in the magnitude of the maximum tooth load was considered to be the effect of the variable spring constant due to the moving contact point between the roller and sprocket wheel tooth.

램프 로드-언로드 특성 향상을 위한 서스펜션강성 최적설계 (Optimal design of the suspension stiffness in HDD for improving the load/unload performance)

  • 강태식;김태수;이철우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 추계학술대회논문집
    • /
    • pp.898-901
    • /
    • 2003
  • In order to get the drive reliability and low Power-consumption characteristics, most of small form factor HDD has und the load/unload mechanism instead of CSS type. Compared with CSS mechanism, the load/unload system has little opportunity of head/media contact during the disk spin-up and down. However, the load/unload mechanism needs the precise integration technology with slider, suspension, ramp and load/unload velocity, and all of these component s should be designed simultaneously, not an individually. In this paper, we focus the design of the suspension stiffness using the specified ABS design. We use the CML software to calculate the load/unload dynamic and use the RSM(Response surface method) to get the optimal condition of the suspension stiffness.

  • PDF

다양한 단면성질의 Inner Holder를 고려한 연성 개폐식 Sliding Carriage의 수직 및 수평하중에 대한 적용성 평가 (Evaluation of Applicability of Sliding Carriage on the Membrane Retractable Roof under Vertical and Horizontal Load Considering the Inner Holder with Various Section Characteristics)

  • 황경주
    • 한국공간구조학회논문집
    • /
    • 제22권1호
    • /
    • pp.67-73
    • /
    • 2022
  • Middle size of membrane retractable roof is under 25m span which consists of various moving systems. Sliding carriage is the system that leads the membrane to parking place, transferring the load from the membrane to structural cable. When membrane moves roof, thus, structural behavior of sliding carriage, which may contain various shapes with friction coefficients, should be investigated by vertical load as well as horizontal load. Nummerical simulation of sliding carriage prototypes, in this research, were performed by incrementation of vertical load and horizontal load as well. Consequently, this paper evaluated proper shapes of inner holder of Sliding carriage and evaluated the effective contact area of inner hold.

Artificial neural network calculations for a receding contact problem

  • Yaylaci, Ecren Uzun;Yaylaci, Murat;Olmez, Hasan;Birinci, Ahmet
    • Computers and Concrete
    • /
    • 제25권6호
    • /
    • pp.551-563
    • /
    • 2020
  • This paper investigates the artificial neural network (ANN) to predict the dimensionless parameters for the maximum contact pressures and contact areas of a contact problem. Firstly, the problem is formulated and solved theoretically by using Theory of Elasticity and Integral Transform Technique. Secondly, the contact problem has been extended based on the ANN. The multilayer perceptron (MLP) with three-layer was used to calculate the contact distances. External load, distance between the two quarter planes, layer heights and material properties were created by giving examples of different values were used at the training and test stages of ANN. Program code was rewritten in C++. Different types of network structures were used in the training process. The accuracy of the trained neural networks for the case was tested using 173 new data which were generated via theoretical solutions so as to determine the best network model. As a result, minimum deviation value (difference between theoretical and C++ ANN results) of was obtained for the network model. Theoretical results were compared with artificial neural network results and well agreements between them were achieved.

실차실험에 의한 집전계의 접촉 동특성 규명 (A Verification of the Contact Dynamics of the Current Collection System on a Test Run)

  • 김정수
    • 한국철도학회논문집
    • /
    • 제10권4호
    • /
    • pp.414-419
    • /
    • 2007
  • The contact characteristics of the current collection system are investigated by analyzing data collected during a test run of the Korean high speed rail vehicle. For the analysis, the signals from accelerometers and load cells attached to the various parts of the pantograph are analyzed in both the time and frequency domains. In the frequency domain, the pantograph response consists of low frequency components related to the rigid-body motion of the panhead assembly and high frequency components due to the structural vibration modes of the pantograph. The analysis shows that the inclusion of the high frequency structural vibration modes of the pantograph in the contact force calculation has a negligible effect on the predicted mean value of the contact force but significantly affects the magnitude of its fluctuations. This finding implies that numerical simulations using lumped element models of the pantograph may accurately predict the mean contact force but is limited in its capacity for predicting the fluctuation about the mean. Since the ratio of the fluctuation to the mean in the contact force increases with increased train speed, the limitation of the predictions based on numerical simulation results becomes more pronounced at higher train speed.

고속 전철용 가선-팬터그래프 시스템의 모델링 및 접촉력 해석 (A Modeling and Contact Force Analysis of the Catenary-pantograph System for a High-speed Rail Vehicle)

  • 김진우;박인기;장진희;왕영용;한창수
    • 한국소음진동공학회논문집
    • /
    • 제13권6호
    • /
    • pp.474-483
    • /
    • 2003
  • In this study, the dynamic characteristics of a catenary system and pantograph supplying electrical power to high-speed trains are investigated. One of the most important issues accompanied by increasing the speed of high-speed rail is stabilization of current collection. To stabilize current collection, it is necessary the contact force between the catenary and the pantograph to be kept continuous without loss of contact. The analytical model of a catenary and a pantograph is constructed to simulate the behavior of an actual system. The analysis of the catenary based on the Finite Element Method (FEM) is performed to develop a catenary model suitable for high speed operation. The reliability of the models is verified by the comparison of the excitation test with Fast Fourier Transform (FFT) data of the actual system. The static deflection of the catenary, stiffness variation in contact lines, dynamic response of the catenary undergoing constant moving load, contact force, and each state of the pantograph model were calculated. It is confirmed that a catenary and pantograph model are necessary for studying the dynamic behavior of the pantograph system.