• 제목/요약/키워드: Contact Load

검색결과 1,209건 처리시간 0.026초

구두 굽의 형태가 인체의 근골격계에 미치는 영향에 관한 연구 (The Study on Musculoskeletal Effects of Heel Types)

  • 이창민;정은희
    • 대한인간공학회지
    • /
    • 제23권1호
    • /
    • pp.39-48
    • /
    • 2004
  • In terms of women engaged in clerical job. working time of the workers who mainly keep standing with their high-heeled shoes on has been increasing. According]y. they are exposed to many kinds of foot deformation caused by loads of lower back and lower extremities due to high-heeled shoes. The type of heels they usually wear are diverse though the hight is same. In this study. we investigated most women's favorite styles of shoes concerned with heights. types and contact areas of the heels. Hence. we designed three kinds of shoes for an experiment: their contact areas with ground are 1 cm2. 2-4 cm2 and over 9 cm2 according to the heel heights. respectively. To investigate the biomechanical effects. analysis of motion and EMG were applied to the experiments. In addition. foot pressure distribution was measured for more detailed analysis. Six healthy young women were participated in this experiments. The result showed the heel becoming higher and narrower increased not only fluctuation of CBM(Center of Body Mass). but also the load of low back muscle and lower extremities. Accordingly. there was significant difference among types of the heel in terms of the role supporting load of the body. though the height is same. Especially. the difference among the pressures on a foot was most significant. In conclusion. we verified biomechanical effects are related with the contact area of a heel with ground as well as the hight.

접촉면 처리 방식에 따른 석탑의 내진 특성 평가 (Seismic Behavior Characteristics of Stone Pagoda According to Contact Surface Types)

  • 김호수;김동관;원태호;전건우
    • 한국공간구조학회논문집
    • /
    • 제19권3호
    • /
    • pp.41-50
    • /
    • 2019
  • The stone pagoda continued to be damaged by weathering and corrosion over time, and natural disasters such as earthquake are accelerating the destruction of cultural properties. Stone pagoda has discontinuous structure behavior and is very vulnerable to the seismic load acting in lateral direction. It is necessary to analyze various design variables as the contact surface characteristics play an important role in the dynamic behavior of stone pagodas. For this purpose, contact surface characteristics of stone pagoda can be classified according to surface roughness and filler type, and representative model is selected and structural modeling and analysis are performed using the discrete element method. Also, the seismic load according to the repetition period is calculated and the dynamic analysis is performed considering the discontinuous characteristics of the stone pagoda. Finally, the seismic behavior characteristics can be analyzed by the evaluation of stresses, displacements and structural safety.

회전 및 하중을 받는 타이어의 응력해석에 관한 연구 (A Study on the Finite Element Analysis of Tire under Rolling and Loading Conditions)

  • 황준;남궁석
    • 한국정밀공학회지
    • /
    • 제12권3호
    • /
    • pp.101-109
    • /
    • 1995
  • Axisymmetric and quasi-static finite element analysis of an inflated tire rotating with constant angular velocity and contact to road has been performed. Centrifugal force effect was added to load stiffness matrix and equation of effective material properties were calculated by the Halpin-Tsai formulation. In this report, radial truck/bus tire was analyzed. It was inflated and rotated at speeds up to 140 km/h. Then, contact problem was performed to calculate stress-strain field of tire wiht flat rigid road under the load due to the self-weight of a vehicle. Significant changes of stress-strain field of tire were observed in the finite element analysis. Shear stress, strain and strain energy density were rapidly increased at the dege of #2 belt at freely rotating state. This concentrated stress and strain made belt edge sparation. Under the condition of flat riged road contact, strain energy density of #2 belt, carcass turn-up part were concentrated and bigger values than only freely rotation state. Therefore, dynamic behaivor of tire has to considered as design factors which are affected to belt edge separation and bead breakage.

  • PDF

Elliptical EHL Contacts under Dynamic Loading Conditions in HERB Drive

  • Jang, Si-Youl;Park, Kyoung-Kuhn;Kim, Wan-Doo;Moon, Ho-Jee
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 proceedings of the second asia international conference on tribology
    • /
    • pp.89-90
    • /
    • 2002
  • Ball reducer (HERB Drive: High Efficient Wave Rolling Ball Drive) with waved grooves has many advantages over other types of reducers for high-reduction ratio, low noise and low energy loss, etc. The mechanism of force transmission is very similar to that of cam and follower in automobile valve train system especially in contact behaviors. In this study, we have investigated the traces of contact between ball and outer ring, and the dynamic contact behaviors of elastohydodynamic lubrication(EHL) with a certain reduction ratio. In order to verify the contact behaviors between ball and outer ring for the critical endurance lift, the contact velocity and load are computed for a cycle. During some intervals of a cycle, the contact velocity reverses its direction very suddenly. It is expected that changing the contact direction causes undesirable endurance performance because EHL film frequently col lapse at the moment of velocity reversal. From the computational investigation in this work, we hope to predict similar contact damages in other machinery due to this kind of contact behaviors, which is very typical in many contact phenomena.

  • PDF

수동필터를 이용한 고속전철 이선현상에 의한 전원외란 저감 (Reduction of Power Disturbance by Contact Loss Phenomenon of a High Speed Electric Train Using Passive Filters)

  • 장진영;진강환;강정남;박동규;김윤호
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.206-211
    • /
    • 2010
  • Since high-speed train is a dynamic load in which electric power is externally supplied, contact loss between the catenary and pantograph occurs. This phenomena including vibrations generates frequently irregular arcs, which, in turn causes EMI. Thus it is very important to develop the approach to reduce arc phenomenon by contact loss, as speed of electric railway vehicle increases. In case of an electric railway vehicle using electrical power, compared with diesel rolling stock, Power Line Disturbance(PLD) such as harmonics, transient voltage and current, Electromagnetic Interference(EMI), and dummy signal injection etc usually occur. In this study, the dynamic characteristics of a contact wire and a pantograph suppling electrical power to high-speed train are investigated with an electrical response point. To implement power line disturbance induced by contact loss phenomenon for high speed train operation, a hardware simulator which considers contact loss between contact wire and pantograph as well as contact wire deviation is developed. It is confirmed by the experiments that contact loss effect is largely dependent on voltage conditions when the contact loss occurs. Also, a passive filter is designed to reduce power disturbance and the designed system is verified by experiment.

Half-bridge 직렬공진 컨버터 적용 무접점 전원장치 효율특성 (Efficiency Characteristics of Half-bridge Series Resonant Converter for the Contact-less Power Supply)

  • 이현관;송환국;김은수;김윤호
    • 전기학회논문지
    • /
    • 제56권5호
    • /
    • pp.884-891
    • /
    • 2007
  • Comparing with the conventional transformer without the air gap, a contact-less transformer with the large air-gap (4.8cm) between the long primary winding and the secondary winding has the increased leakage inductance and the reduced magnetizing inductance. By the increased leakage inductance and the reduced magnetizing inductance on the primary of the contact-less transformer, a good deal of the primary current circulates through magnetizing inductance, which results in a massive loss and the high voltage gain characteristics for load variations in contact-less power supply (CPS). To consider these characteristics, in this paper, the efficiency characteristics of the contact-less power supply using a series resonant converter is presented, described and verified through theoretical analysis, computer simulation and experimental test of 2.5kW prototype.

Analysis of slender structural elements under unilateral contact constraints

  • Silveira, Ricardo Azoubel Da Mota;Goncalves, Paulo Batista
    • Structural Engineering and Mechanics
    • /
    • 제12권1호
    • /
    • pp.35-50
    • /
    • 2001
  • A numerical methodology is presented in this paper for the geometrically non-linear analysis of slender uni-dimensional structural elements under unilateral contact constraints. The finite element method together with an updated Lagrangian formulation is used to study the structural system. The unilateral constraints are imposed by tensionless supports or foundations. At each load step, in order to obtain the contact regions, the equilibrium equations are linearized and the contact problem is treated directly as a minimisation problem with inequality constraints, resulting in a linear complementarity problem (LCP). After the resulting LCP is solved by Lemke's pivoting algorithm, the contact regions are identified and the Newton-Raphson method is used together with path following methods to obtain the new contact forces and equilibrium configurations. The proposed methodology is illustrated by two examples and the results are compared with numerical and experimental results found in literature.

미소슬립을 고려한 압입 시편의 접촉응력 해석 (Contact Stress Analysis of Shrink-fitted Specimen considering Micro-slip)

  • 이동형;구병춘;이찬우;정흥채
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.632-637
    • /
    • 2004
  • In the shrink or press fitted shaft such as railway axle, fretting can occur by cyclic stress and micro-slippage due to local movement between the shaft and the hub. When the fretting occurs in the press fitted shaft, the fatigue strength remarkably decreases compared with that of without fretting. In this paper, the analysis of contact stresses in a press fitted shaft in contact with a hub was conducted by finite element method and the micro-slip according to the bending load was analyzed. It is found that the largest stress concentration and maximum slip amplitude of shrink fitted shaft are found at the edge of the interface and the distribution of contact stresses at the contact edge has largely influenced and coefficient of friction.

  • PDF

Effect of Elastic Modulus Mismatch on the Contact Crack Initiation in Hard Ceramic Coating Layer

  • Lee, Kee-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1928-1937
    • /
    • 2003
  • Effect of elastic modulus mismatch on the contact crack initiation is investigated to find major parameters in designing desirable surface-coated system. Silicon nitride coated soft materials with various elastic modulus mismatch, E$\_$c//E$\_$s/=1.06∼356 are prepared for the analysis. Hertzian contact test is conducted for producing contact cracks and the acoustic emission detecting technique for measuring the critical load of crack initiation. The implication is that coating thickness and material strength are controllable parameters to prevent the initiation of contact cracks resulted from the elastic modulus mismatch in the hard ceramic coating layer on the soft materials.

Crack-contact problem for an elastic layer with rigid stamps

  • Birinci, Ahmet
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.285-296
    • /
    • 2011
  • The plane crack-contact problem for an infinite elastic layer with two symmetric rectangular rigid stamps on its upper and lower surfaces is considered. The elastic layer having an internal crack parallel to its surfaces is subjected to two concentrated loads p on its upper and lower surfaces trough the rigid rectangular stamps and a pair of uniform compressive stress $p_0$ along the crack surface. It is assumed that the contact between the elastic layer and the rigid stamps is frictionless and the effect of the gravity force is neglected. The problem is reduced to a system of singular integral equations in which the derivative of the crack surface displacement and the contact pressures are unknown functions. The system of singular integral equations is solved numerically by making use of an appropriate Gauss-Chebyshev integration formula. Numerical results for stress-intensity factor, critical load factor, $\mathcal{Q}_c$, causing initial closure of the crack tip, the crack surface displacements and the contact stress distribution are presented and shown graphically for various dimensionless quantities.