• Title/Summary/Keyword: Contact Detection

Search Result 452, Processing Time 0.021 seconds

An Efficient Contact Detection Algorithm for Contact Problems with the Boundary Element Method (경계요소법을 이용한 접촉해석의 효율적인 접촉면 검출기법)

  • Kim, Moon-Kyum;Yun, Ik-Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.439-444
    • /
    • 2009
  • This paper presents an efficient contact detection algorithm for the plane elastostatic contact problem of the boundary element method(BEM). The data structures of the boundary element method are dissected to develop an efficient contact detection algorithm. This algorithm is consists of three parts as global searching, local searching and contact relation setting to reflect the corner node problem. Contact master and slave type elements are used in global searching step and quad-tree is selected as the spatial decomposition method in local searching step. To set up contact relation equations, global contact searching is conducted at node level and local searching is performed at element level. To verify the efficiency of the proposed contact detection algorithm of BEM, numerical example is presented.

Detection of Damages in Concrete Structures Using Non-Contact Air-Coupled Sensing Methods

  • Shin, Sung-Woo
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.282-289
    • /
    • 2010
  • Most nondestructive testing techniques require good contact between the sensor and tested concrete surface to obtain reliable data. But the surface preparation is often very time and labor consuming due to the rough surface or limited access of concrete structures. One approach to speed up the data collection process is to eliminate the need for physical contact between the sensor and tested structure. Non-contact air-coupled sensing technique can be a good solution to this problem. An obvious advantage of the non-contact air-coupled sensing technique is which can greatly speed up the data collection in field and thus the damage detection process can be completed very rapidly. In this article, recent developments in non-contact air-coupled sensing technique for rapid detection of damages in concrete structures are summarized to evoke interest, discussion and further developments on this technique to a NDT research community in Korea. It is worth noting that the works in this article have been published in the types of thesis, proceedings, and journals. All published sources are cited in the text and listed in reference.

Z-axis Contact Detection Algorithm for a Wire Bonder using a Discrete Kalman Filter

  • Kim, Jung-Han
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.8 no.1
    • /
    • pp.52-58
    • /
    • 2007
  • We propose a new contact detection algorithm for fine pitch wire bonding. Fast and stable contact detection of the z-axis in wire bonding is extremely important to maintain the quality of fine pitch gold wire bonding processes, which use a small pad less than $70{\mu}m$ in diameter. A small perturbation in the contact detection time causes a large difference in the size of the formed squashed ball. The new detection method is based on a statistical approach and designed for a discrete Kalman filter. It is faster and has smaller detection time variations than conventional detection methods. Experimental results are presented to demonstrate the advantages of the proposed algorithm.

Analysis of Contact Loss Arc Spectrum between Contact Wire and Pantograph Material using a Spectrometer (광계측기를 이용한 전차선-팬터그래프 재질별 이선아크 스펙트럼 분석)

  • Chang, Chin-Young;Jung, No-Geon;Park, Jong-Gook;Koo, Kyung-Wan;Kim, Jae-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.12
    • /
    • pp.1803-1808
    • /
    • 2013
  • To maintain contact between catenary and pantograph copper is important in order to transmit power smoothly on Current collection system. But, Arc discharge with strong light is generated because of contact loss. Therefore, Arc discharge detection is important measurement factor judging performance of current collection system. In this paper, It is described to results of arc discharge applying UV detection technology using arc generator. And Arc discharge was detected using the most commonly used processing catenary and rigid catenary and pantograph copper of electric rolling stock for securing arc detection instrument reliability. Results of contact loss detection instrument in this paper will be used for maintenance of current collection quality and system.

Research on the Non-Contact Detection of Internal Defects in a Rail using Ultrasonic Waves (비접촉 초음파 방식의 철도레일 내부결함 검출에 관한 연구)

  • Han, Soon Woo;Cho, Seung Hyun;Kim, Joon Woo;Heo, Tae Hoon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.617-625
    • /
    • 2012
  • Non-contact detection of internal defects in a rail using ultrasonic waves is discussed in this paper. Cracks in a rail may be a cause of a serious railway accident such as derailment if left undetected. Concurrent rail inspection method based on ultrasonic testing using piezoelectric transducers has several limitations as it should keep physical contact with the rail. This work suggests a non-contact detection of internal defects in a rail using ElectroMagnetic Acoustic Transducers (EMAT) which can produce and measure ultrasonic waves in a rail without any couplant. The EMATs for rail inspection are designed and fabricated and their working performance is verified through a series of experiments on various types of internal defects in test rails. The effect of lift-off between the transducers and the rail on the generated signals is also discussed.

  • PDF

Research on Overheat Protection Techniques of Connection Parts of MCCB by Poor Contact (MCCB 단자 접속부의 접촉불량에 의한 과열사고 방지기법에 관한 연구)

  • Kim, Dong-Woo;Lee, Ki-Yeon;Moon, Hyun-Wook;Kim, Hyang-Kon;Cho, Chung-Seog
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.54-60
    • /
    • 2008
  • In this study, damage characteristics of MCCB and terminal block due to poor contact were analyzed, and various poor contact detection techniques were suggested. Firstly, the detection techniques using thermocouple and infrared thermal camera were analyzed respectively. Also, thermo-cap during poor contact detected abnormal status effectively by changing its color, and the detection system using an odor detector and odor capsules was analyzed. Lastly, poor contact detection screw was made using characteristics of fusible alloy, and we applied the poor contact detection screw to terminal block. The above methods could prevent electrical fire caused by poor contact effectively if they are used properly.

Searching Algorithm for Finite Element Analysis of 2-D Contact Problems (2차원 접촉문제의 유한요소 해석을 위한 탐색알고리즘)

  • 장동환;최호준;고병두;조승한;황병복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.12
    • /
    • pp.148-158
    • /
    • 2003
  • In this paper, efficient and accurate contact search algorithm is proposed for the contact problems by the finite element method. A slave node and a maser contact segment is defined using the side of a finite element on the contact surface. The specific goal is to develop techniques of reducing the nonsmoothness of the contact interactions arising from the finite element discretization of the contact surface. Contact detection is accomplished by monitoring the territory of the slave nodes throughout the calculation for possible penetration of a master surface. To establish the validity of the proposed algorithm, some different process and geometries examples were simulated. Efforts are focused on the error rate that is based on the penetrated area through the simulations fur large deformation with contact surface between deformable bodies. A proposed algorithm offers improvements in contact detection from the simulation results.

A Study on the Detection Technique of the Flame and Series arc by Poor Contact (접촉 불량에 의한 불꽃 및 직렬아크의 검출 기법에 관한 연구)

  • Woo, Kim Hyun;Hyun, Baek Dong
    • Fire Science and Engineering
    • /
    • v.26 no.6
    • /
    • pp.24-30
    • /
    • 2012
  • This study is on the method of the detection for flame and series arc which can be happened at poor contact point added a vibration in part of contact point of low voltage line. In general, the causes of electric fire are over current, short circuit, poor contact, ect. The over-current or short circuit among those causes is detected by measuring a instant current value, but poor contact is difficult to detect by measuring a excessive value of the voltage and current and a distortion of waveforms. And therefore, in this paper, it is studied on the optimal technique of the arc judgement using fuzzy logic and MDET (Multi Dimension Estimation Technique). And it carries out the simulation for arc detection and the experiment for controller and load test. In result, the controller and detection algoristhm, is classified with normal wave and abnormal arc wave without relation with each loads and so the controller can detect a series arc successfully.

Laser-Ultrasonics Application for Non-Contact and Non-destructive Evaluation of Structure (구조물의 비접촉 비파괴 검사를 위한 레이저 초음파법 적용)

  • Kim Jae-Yeal;Song Kyung-Seok;Yang Dong-Jo
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.49-54
    • /
    • 2005
  • Measuring defects on the inside and on the surface of a steel structure is very important technology in order to predict the life span of the structure. In particular, a place with a high probability that it may contain defects is a welded part and it is very important to check defects in the part, absence/presence of non-uniform substances, its shape, and the location. Many non-destructive tests can be applied, but the ultrasonic flow detection test is widely used with some advantages. The ultrasonic flow detection test, however, cannot be applied when there is a problem by a contact medium between PZT and a specimen, in case of a small and complicated shape or a moving object or when the specimen is hot. In this study, to solve the problems of the contact ultrasonic flow detection test, the non-contact ultrasonic flow detection test for sending/receiving ultrasonic waves using lasers was described. I intended to develop a non-destructive detection system applying the laser application ultrasonic test to a steel structure by detecting the defects inside of and on the surface of the specimen.

Non-Contact Damage Detection of Rotating Shafts by Using the Magnetostrictive Effect (마그네토스트릭션 효과를 이용한 회전축의 비접촉 결함진단)

  • Kim, Yun-Yeong;Han, Sun-U;Lee, Ho-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1599-1607
    • /
    • 2002
  • The purpose of this work is to suggest a new non-contact damage detection method for rotating ferromagnetic shafts. The presence and the location of a damage in rotating shafts are assessed by means of longitudinal elastic waves propagating along the shafts. These waves are measured by non-contact magnetostrictive sensors consisting of a coil and bias magnets. This paper shows the effectiveness of the sensors in the damage detection of rotating shafts. Several issues occurring in the application of the sensors to rotating shafts are carefully investigated.