• Title/Summary/Keyword: Consumption utility

Search Result 228, Processing Time 0.031 seconds

Evaluation of How the Motivation the Use of Specialized Coffee Branches Brand Attitude, Satisfaction and Loyalty (커피 전문점 이용 동기가 브랜드 태도와 만족도 및 충성도에 미치는 영향)

  • Kim, Tae-Hee;Yoo, Hee-Joo;Lee, In-Ok
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.20 no.1
    • /
    • pp.149-158
    • /
    • 2010
  • The domestic specialized coffee branch market is growing both in size and sales, and the competition between different brands is increasing. The goal of this study was to divide the customer's consumption motivations into utility usage motivation, hedonic usage motivation, and ostentation usage motivation and to determine how each motivation influences the attitude, satisfaction and loyalty toward the brand. The results can be summarized as follows. (1) Hedonic motivation and ostentation motivation with the exception of utility motivation were shown to have an effect on brand attitude. (2) Brand attitude was shown to have an effect on satisfaction and loyalty. (3) Satisfaction had an effect on loyalty. However, if the satisfaction was low, the intentions for subsequent visits and positive oral transmissions decrease. The result of this study showed that establishing positive brand attitude, satisfaction and loyalty to customers with pleasure and ostentation motivations is effective. Moreover, marketing activities such as cultural and playful events should be emphasized for customers with hedonic motivations, while environments with better atmosphere and careful service should be provided to customers with ostentation motivation.

A Case Study of the Impact of a Cybersecurity Breach on a Smart Grid Based on an AMI Attack Scenario (AMI 공격 시나리오에 기반한 스마트그리드 보안피해비용 산정 사례)

  • Jun, Hyo-Jung;Kim, Tae-Sung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.26 no.3
    • /
    • pp.809-820
    • /
    • 2016
  • The smart grid, a new open platform, is a core application for facilitating a creative economy in the era of the Internet of Things (IoT). Advanced Metering Infrastructure (AMI) is one of the components of the smart grid and a two-way communications infrastructure between the main utility operator and customer. The smart meter records consumption of electrical energy and communicates that information back to the utility for monitoring and billing. This paper investigates the impact of a cybersecurity attack on the smart meter. We analyze the cost to the smart grid in the case of a smart meter attack by authorized users based on a high risk scenario from NESCOR. Our findings could be used by policy makers and utility operators to create investment decision-making models for smart grid security.

QoS Aware Energy Allocation Policy for Renewable Energy Powered Cellular Networks

  • Li, Qiao;Wei, Yifei;Song, Mei;Yu, F. Richard
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4848-4863
    • /
    • 2016
  • The explosive wireless data service requirement accompanied with carbon dioxide emission and consumption of traditional energy has put pressure on both industria and academia. Wireless networks powered with the uneven and intermittent generated renewable energy have been widely researched and lead to a new research paradigm called green communication. In this paper, we comprehensively consider the total generated renewable energy, QoS requirement and channel quality, then propose a utility based renewable energy allocation policy. The utility here means the satisfaction degree of users with a certain amount allocated renewable energy. The energy allocation problem is formulated as a constraint optimization problem and a heuristic algorithm with low complexity is derived to solve the raised problem. Numerical results show that the renewable energy allocation policy is applicable not only to soft QoS, but also to hard QoS and best effort QoS. When the renewable energy is very scarce, only users with good channel quality can achieve allocated energy.

Study on the Power-Grid Impact and Optimal Charging Control Strategy with PHEV Market Penetration (PHEV 시장 형성 시 전력망에 미치는 영향 및 최적 충전 제어 전략에 관한 연구)

  • Roh, Chul-Woo;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.4
    • /
    • pp.278-287
    • /
    • 2009
  • Plug-in hybrid electric vehicle (PHEV) with capability of being recharged from the power-grid will reduce oil consumption. Also, the PHEV will affect the utility operations by adding additional electricity demand for charging. In this research, the power-grid impact by demand of PHEV charging is presented and the optimal charging control strategy for utility operators is proposed with simulated data. The penetration of PHEV is assumed to be 50% in the circumstances of Korean passenger car market and Korean power-grid market limitedly. To obtain smooth load shape and utilize the surplus electricity in power-grid at midnight and dawn, the peak of charging demand should be controlled to be located before 4:00 a.m., and the time slot which can supply the electricity power to PHEV should be allowed between 1:00 a.m.$\sim$7:00 a.m.

An Optimal Strategy for Private Life Annuity by Utilizing AEW (AEW를 활용한 개인종신연금의 최적화 전략)

  • Yang, Jae-Hwan;Yuh, Yoon-Kyung
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.173-186
    • /
    • 2011
  • In this paper, we evaluate life annuity plans for Korean pre-retired single and married couple participating Korea National Pension (KNP) and find optimal life annuity strategy by using utility-based measurements called AEW (Annuity Equivalent Wealth). Specifically, we extend a previous study to obtain a detailed optimal combination of annuitizing age and wealth in terms of percentage of net wealth at the time of retirement. A nonlinear optimization model is formulated with the objective of maximizing utility on consumption and bequest, and the dynamic programming (DP) technique is used to solve this problem. We find that there exist consistent patterns in optimal combinations of annuitizing age and wealth. Also, for all cases the optimal combination is significantly better than several other combinations. The results indicate that using the optimal approach can be beneficial to practitioners in insurance industry and prospective purchasers of life annuity. We conclude the paper with some discussions and suggestions.

Analysis and Design of Utility Interactive Photovoltaic System with Source Side VAR Compensation (전원측 무효전력 보상기능을 갖는 계통연계형 태양광 발전 시스템의 해석 및 설계)

  • 이상용;고재석;한찬영;이정락;최규하;목형수
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.591-594
    • /
    • 1999
  • The application field of photovoltaic system has been increased widely. In the application of photovoltaic system, the utility interactive photovoltaic system(UIPVS) has benefits of not only the home energy saving in domestic system but also reduction of peak power which threaten the capacity of power plant equipment when the maximum power consumption is occurred in daytime. This paper represents the effect of the nonlinear AC load which connected to the UIPVS with parallel connection and introduces the active power filtering(APF) techniques to the UIPVS for the reactive power compensation. The enhancement of source side power quality using APF algorithm is verified using simulation.

  • PDF

SINR Pricing in Non Cooperative Power Control Game for Wireless Ad Hoc Networks

  • Suman, Sanjay Kumar;Kumar, Dhananjay;Bhagyalakshmi, L.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.7
    • /
    • pp.2281-2301
    • /
    • 2014
  • In wireless ad hoc networks the nodes focus on achieving the maximum SINR for efficient data transmission. In order to achieve maximum SINR the nodes culminate in exhausting the battery power for successful transmissions. This in turn affects the successful transmission of the other nodes as the maximum transmission power opted by each node serves as a source of interference for the other nodes in the network. This paper models the choice of power for each node as a non cooperative game where the throughput of the network with respect to the consumption of power is formulated as a utility function. We propose an adaptive pricing scheme that encourages the nodes to use minimum transmission power to achieve target SINR at the Nash equilibrium and improve their net utility in multiuser scenario.

A Configuration of DLC(Direct Load Control) Using Internet Communication and Load Control Method (인터넷을 이용한 DLC(Direct Load Control)의 구성 및 부하제어기법)

  • Lee, Jae-Kyung;Kim, In-Soo;Kim, Hyeong-Jung;Lee, Seoung-Yoon
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.60-64
    • /
    • 2001
  • Recent recovery of the Korean economy drives a rapid increase in utility consumption and requires more stable utility supply and maintenance. However, power location security hardship, reinforcement of international environmental regulation and a huge cost of power plant construction have increased the burden laid on the stable supply. In addition, an efficient and flexible load management is required more than any era since an increment of the rate of increase in cooling load is expected. Therefore, according as the necessity of direct load control for cooling load during the summer in Korea was on the rise, direct load control systems by Internet communication method are constructed at five commercial buildings. Based on practical load control, this study proposes various application modes and communication methods prior to extension diffusion of direct load control hereafter.

  • PDF

Appliance Load Profile Assessment for Automated DR Program in Residential Buildings

  • Abdurazakov, Nosirbek;Ardiansyah, Ardiansyah;Choi, Deokjai
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.72-79
    • /
    • 2019
  • The automated demand response (DR) program encourages consumers to participate in grid operation by reducing power consumption or deferring electricity usage at peak time automatically. However, successful deployment of the automated DR program sphere needs careful assessment of appliances load profile (ALP). To this end, the recent method estimates frequency, consistency, and peak time consumption parameters of the daily ALP to compute their potential score to be involved in the DR event. Nonetheless, as the daily ALP is subject to varying with respect to the DR time ALP, the existing method could lead to an inappropriate estimation; in such a case, inappropriate appliances would be selected at the automated DR operation that effected a consumer comfort level. To address this challenge, we propose a more proper method, in which all the three parameters are calculated using ALP that overlaps with DR time, not the total daily profile. Furthermore, evaluation of our method using two public residential electricity consumption data sets, i.e., REDD and REFIT, shows that our energy management systems (EMS) could properly match a DR target. A more optimal selection of appliances for the DR event achieves a power consumption decreasing target with minimum comfort level reduction. We believe that our approach could prevent the loss of both utility and consumers. It helps the successful automated DR deployment by maintaining the consumers' willingness to participate in the program.

Effects of Hydrogen Sulfide and Siloxane on Landfill Gas Utility Facilities

  • Nam, Sang-Chul;Hur, Kwang-Beom;Lee, Nam-Hoon
    • Environmental Engineering Research
    • /
    • v.16 no.3
    • /
    • pp.159-164
    • /
    • 2011
  • This study examined the emission characteristics of impure gas-like hydrogen sulfide and siloxane contained in landfill gas (LFG) and investigated the effect of impure gas on LFG utility facilities. As a result of an LFG component analysis from eight landfills in the same environment, hydrogen sulfide averaged 436 ppmv (22-1,211 ppmv), and the concentration of total siloxane averaged 7.95 mg/$m^3$ (1.85-21.18 mg/$m^3$). In case of siloxane concentration by component, the ratio of D4 (average 3.79 mg/$m^3$) and D5 (average 2.64 mg/$m^3$) indicated the highest level. Different kinds of scales were found on the gas air heater (GAH) and inside the boiler. The major component of scale from the GAH was $Fe_2O_3$ of 38.5%, and it was caused by hydrogen sulfide. Other scale was found on the bottom and the wall of the boiler and the scale was silicon dioxide of 92.8% and 98.9%. The silicon dioxide scale was caused by combustion of siloxane. As a result of a scanning electron microscopy analysis, the structure of the silicon dioxide scale from the boiler was an immediate filamentous type. Consequently, as silicon dioxide scale is bulky, such bad effects were worsening, as an interruption in heat conduction, increase in fuel consumption, damage to the boiler by overheating, and clogged emission pipeline could occur in LFG utility facilities.