• Title/Summary/Keyword: Consumer sentiment

Search Result 114, Processing Time 0.023 seconds

A Study on Consumer Sentiment Index Analysis and Prediction Using ARMA Model (ARMA모형을 이용한 소비자 심리지수 분석과 예측에 관한 연구)

  • Kim, Dongha
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.3
    • /
    • pp.75-82
    • /
    • 2022
  • The purpose of the Consumer sentiment index survey is to determine the consumer's economic situation and consumption spending plan, and it is used as basic data for diagnosing economic phenomena and forecasting the future economic direction. The purpose of this paper is to analyze and predict the future Consumer sentiment index using the ARMA model based on the past consumer index. Consumer sentiment index is determined according to consumer trends, so it can reflect consumer realities. The consumer sentiment index is greatly influenced by economic indicators such as the base interest rate and consumer price index, as well as various external economic factors. If the consumer sentiment index, which fluctuates greatly due to consumer economic conditions, can be predicted, it will be useful information for households, businesses, and policy authorities. This study predicted the Consumer sentiment index for the next 3 years (36 months in total) by using time series analysis using the ARMA model. As a result of the analysis, it shows a characteristic of repeating an increase or a decrease every month according to the consumer trend. This study provides empirical results of prediction of Consumer sentiment index through statistical techniques, and has a contribution to raising the need for policy authorities to prepare flexible operating policies in line with economic trends.

Analysis on the Relationship between Consumer Sentiment and Macro-economic Indices by Consumer's Characteristics (우리나라 소비자 특성별 체감경기와 거시경제지표 간의 관계 분석)

  • Kim, Young-Joon;Shin, Sukha
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.474-482
    • /
    • 2016
  • This paper presents an empirical analysis on the relationship between consumer sentiment and macro-economic indices by consumer's characteristics such as age, income and employment type. According to the empirical analysis based on the Consumer Sentiment Index(CSI) of the Bank of Korea and other macro-economic indices, the following study findings are presented. First, individual consumer sentiment depends not only on GDP growth, but also on other macro-economic conditions such as wage, employment, consumer and asset price, and debt burden. Second, the degree of importance of the macro-economic indices on determining individual consumer sentiment varies strongly according to consumers' characteristics. These findings reveal that the gap between consumer sentiment and GDP growth can largely be explained by considering the other macro-economic indices and consumer's characteristics.

Time Series Analysis of the Relationship between Housing Consumer Sentiment and Regional Housing Prices in Seoul (서울시 주택소비심리와 권역별 주택가격의 시계열적 관계분석)

  • Yang, Hye-Seon;Seo, Won-Seok
    • Journal of Cadastre & Land InformatiX
    • /
    • v.50 no.1
    • /
    • pp.125-141
    • /
    • 2020
  • This study investigated the time-series relationship between housing consumer sentiment and housing prices in the five major districts in Seoul and also analyzed the effect of the housing consumer sentiment on housing prices using Granger Causality and VEC (Vector Error Correction) models. To describe the key results, first of all, housing consumer sentiment and regional housing market prices were closely related to each other, and the consumer sentiment strongly affected the change of housing prices. Second, the housing consumer sentiment was confirmed to have a discriminatory effect on the housing prices among the districts in Seoul in the short term. Specifically, the housing price of the east southern district (ESD) was the main reason for the change in housing consumer sentiment in Seoul, and that the resulting impact was transferred to other districts. Third, it was analyzed that regions other than the ESD would increase the housing prices in the long term as the housing consumer sentiment turned positive, but that the ESD would see a steady tone. Fourth, in the case of relative influence by district, housing (apartment) price fluctuation in a district was generally found to be most affected by adjacent or competitive districts. Through these findings, this study confirmed that there is a clear causality between housing consumer sentiment and housing prices in each district of Seoul and that there is a discriminatory influence on housing consumer sentiment among the districts.

Measuring economic sentiment using ordinary response options

  • Park, Inho;Kim, Tae Yoon
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.163-172
    • /
    • 2017
  • Economic sentiment is typically measured using ordinary response options. The University of Michigan and the United States Conference Board are two widely used major indexes that have separately established independent consumer sentiment indexes based on three-level ordinary response options: positive, neutral, and negative. Notwithstanding, limited attention has been paid to the structural differences in their built-in formulas, which are referred to the disparate micro scoring schemes applied to an individual question. This paper examines the structural difference of the two indexes and then addresses situations where one is more reliable than the other. Real data from business tendency surveys of the Organization for Economic Cooperation and Development are used to illustrate our points empirically. As a conclusion, it is stressed that the two indexes should be handled with care when applied to economic sentiment comparison studies.

Consumer Animosity to Foreign Product Purchase: Evidence from Korean Export to China

  • Kim, Jin-Hee;Kim, Myung Suk
    • Journal of Korea Trade
    • /
    • v.24 no.6
    • /
    • pp.61-81
    • /
    • 2020
  • Purpose - This paper examines how the consumer animosity of partner country influences the purchase of foreign products. We analyzed news sentiment to determine whether Chinese consumer's animosity affect the purchase of the products made in Korea around the time when the U.S. Terminal High Altitude Area Defense missile system was deployed in South Korea. Design/methodology - To measure the tone of Chinese consumer animosity more carefully, we utilized a text mining technique of the Chinese language to read the public's opinion. Using Chinese news paper's editorials of 2015.1-2018.10, we analyzed the sentiment toward Korea and regressed it with Korean export to China. Findings - Empirical results report that Chinese consumers tended to reduce their purchase of consumer goods from Korea when the animosity increased, that is, the sentiments of Chinese news editorials were negative. In contrast, the animosity did not affect the purchase of Korean intermediates or raw materials. We further analyzed the effect by dividing the animosity into three categories; politics, economics, and culture. Among these groups, political news exhibits a unique effect on Chinese purchase on consumer goods from Korea. Originality/value - Existing literature on animosity models has measured the animosity by collecting the consumers' opinions through survey at a given time point, whereas it is measured by analyzing the tone of the press release by sentiment analysis during the time period around the event occurrence in this study.

Electronic-Composit Consumer Sentiment Index(CCSI) development by Social Bigdata Analysis (소셜빅데이터를 이용한 온라인 소비자감성지수(e-CCSI) 개발)

  • Kim, Yoosin;Hong, Sung-Gwan;Kang, Hee-Joo;Jeong, Seung-Ryul
    • Journal of Internet Computing and Services
    • /
    • v.18 no.4
    • /
    • pp.121-131
    • /
    • 2017
  • With emergence of Internet, social media, and mobile service, the consumers have actively presented their opinions and sentiment, and then it is spreading out real time as well. The user-generated text data on the Internet and social media is not only the communication text among the users but also the valuable resource to be analyzed for knowing the users' intent and sentiment. In special, economic participants have strongly asked that the social big data and its' analytics supports to recognize and forecast the economic trend in future. In this regard, the governments and the businesses are trying to apply the social big data into making the social and economic solutions. Therefore, this study aims to reveal the capability of social big data analysis for the economic use. The research proposed a social big data analysis model and an online consumer sentiment index. To test the model and index, the researchers developed an economic survey ontology, defined a sentiment dictionary for sentiment analysis, conducted classification and sentiment analysis, and calculated the online consumer sentiment index. In addition, the online consumer sentiment index was compared and validated with the composite consumer survey index of the Bank of Korea.

Construction of Consumer Confidence index based on Sentiment analysis using News articles (뉴스기사를 이용한 소비자의 경기심리지수 생성)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.3
    • /
    • pp.1-27
    • /
    • 2017
  • It is known that the economic sentiment index and macroeconomic indicators are closely related because economic agent's judgment and forecast of the business conditions affect economic fluctuations. For this reason, consumer sentiment or confidence provides steady fodder for business and is treated as an important piece of economic information. In Korea, private consumption accounts and consumer sentiment index highly relevant for both, which is a very important economic indicator for evaluating and forecasting the domestic economic situation. However, despite offering relevant insights into private consumption and GDP, the traditional approach to measuring the consumer confidence based on the survey has several limits. One possible weakness is that it takes considerable time to research, collect, and aggregate the data. If certain urgent issues arise, timely information will not be announced until the end of each month. In addition, the survey only contains information derived from questionnaire items, which means it can be difficult to catch up to the direct effects of newly arising issues. The survey also faces potential declines in response rates and erroneous responses. Therefore, it is necessary to find a way to complement it. For this purpose, we construct and assess an index designed to measure consumer economic sentiment index using sentiment analysis. Unlike the survey-based measures, our index relies on textual analysis to extract sentiment from economic and financial news articles. In particular, text data such as news articles and SNS are timely and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. There exist two main approaches to the automatic extraction of sentiment from a text, we apply the lexicon-based approach, using sentiment lexicon dictionaries of words annotated with the semantic orientations. In creating the sentiment lexicon dictionaries, we enter the semantic orientation of individual words manually, though we do not attempt a full linguistic analysis (one that involves analysis of word senses or argument structure); this is the limitation of our research and further work in that direction remains possible. In this study, we generate a time series index of economic sentiment in the news. The construction of the index consists of three broad steps: (1) Collecting a large corpus of economic news articles on the web, (2) Applying lexicon-based methods for sentiment analysis of each article to score the article in terms of sentiment orientation (positive, negative and neutral), and (3) Constructing an economic sentiment index of consumers by aggregating monthly time series for each sentiment word. In line with existing scholarly assessments of the relationship between the consumer confidence index and macroeconomic indicators, any new index should be assessed for its usefulness. We examine the new index's usefulness by comparing other economic indicators to the CSI. To check the usefulness of the newly index based on sentiment analysis, trend and cross - correlation analysis are carried out to analyze the relations and lagged structure. Finally, we analyze the forecasting power using the one step ahead of out of sample prediction. As a result, the news sentiment index correlates strongly with related contemporaneous key indicators in almost all experiments. We also find that news sentiment shocks predict future economic activity in most cases. In almost all experiments, the news sentiment index strongly correlates with related contemporaneous key indicators. Furthermore, in most cases, news sentiment shocks predict future economic activity; in head-to-head comparisons, the news sentiment measures outperform survey-based sentiment index as CSI. Policy makers want to understand consumer or public opinions about existing or proposed policies. Such opinions enable relevant government decision-makers to respond quickly to monitor various web media, SNS, or news articles. Textual data, such as news articles and social networks (Twitter, Facebook and blogs) are generated at high-speeds and cover a wide range of issues; because such sources can quickly capture the economic impact of specific economic issues, they have great potential as economic indicators. Although research using unstructured data in economic analysis is in its early stages, but the utilization of data is expected to greatly increase once its usefulness is confirmed.

Development of Customer Sentiment Pattern Map for Webtoon Content Recommendation (웹툰 콘텐츠 추천을 위한 소비자 감성 패턴 맵 개발)

  • Lee, Junsik;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.4
    • /
    • pp.67-88
    • /
    • 2019
  • Webtoon is a Korean-style digital comics platform that distributes comics content produced using the characteristic elements of the Internet in a form that can be consumed online. With the recent rapid growth of the webtoon industry and the exponential increase in the supply of webtoon content, the need for effective webtoon content recommendation measures is growing. Webtoons are digital content products that combine pictorial, literary and digital elements. Therefore, webtoons stimulate consumer sentiment by making readers have fun and engaging and empathizing with the situations in which webtoons are produced. In this context, it can be expected that the sentiment that webtoons evoke to consumers will serve as an important criterion for consumers' choice of webtoons. However, there is a lack of research to improve webtoons' recommendation performance by utilizing consumer sentiment. This study is aimed at developing consumer sentiment pattern maps that can support effective recommendations of webtoon content, focusing on consumer sentiments that have not been fully discussed previously. Metadata and consumer sentiments data were collected for 200 works serviced on the Korean webtoon platform 'Naver Webtoon' to conduct this study. 488 sentiment terms were collected for 127 works, excluding those that did not meet the purpose of the analysis. Next, similar or duplicate terms were combined or abstracted in accordance with the bottom-up approach. As a result, we have built webtoons specialized sentiment-index, which are reduced to a total of 63 emotive adjectives. By performing exploratory factor analysis on the constructed sentiment-index, we have derived three important dimensions for classifying webtoon types. The exploratory factor analysis was performed through the Principal Component Analysis (PCA) using varimax factor rotation. The three dimensions were named 'Immersion', 'Touch' and 'Irritant' respectively. Based on this, K-Means clustering was performed and the entire webtoons were classified into four types. Each type was named 'Snack', 'Drama', 'Irritant', and 'Romance'. For each type of webtoon, we wrote webtoon-sentiment 2-Mode network graphs and looked at the characteristics of the sentiment pattern appearing for each type. In addition, through profiling analysis, we were able to derive meaningful strategic implications for each type of webtoon. First, The 'Snack' cluster is a collection of webtoons that are fast-paced and highly entertaining. Many consumers are interested in these webtoons, but they don't rate them well. Also, consumers mostly use simple expressions of sentiment when talking about these webtoons. Webtoons belonging to 'Snack' are expected to appeal to modern people who want to consume content easily and quickly during short travel time, such as commuting time. Secondly, webtoons belonging to 'Drama' are expected to evoke realistic and everyday sentiments rather than exaggerated and light comic ones. When consumers talk about webtoons belonging to a 'Drama' cluster in online, they are found to express a variety of sentiments. It is appropriate to establish an OSMU(One source multi-use) strategy to extend these webtoons to other content such as movies and TV series. Third, the sentiment pattern map of 'Irritant' shows the sentiments that discourage customer interest by stimulating discomfort. Webtoons that evoke these sentiments are hard to get public attention. Artists should pay attention to these sentiments that cause inconvenience to consumers in creating webtoons. Finally, Webtoons belonging to 'Romance' do not evoke a variety of consumer sentiments, but they are interpreted as touching consumers. They are expected to be consumed as 'healing content' targeted at consumers with high levels of stress or mental fatigue in their lives. The results of this study are meaningful in that it identifies the applicability of consumer sentiment in the areas of recommendation and classification of webtoons, and provides guidelines to help members of webtoons' ecosystem better understand consumers and formulate strategies.

How do Korean Customers Respond to Japanese Retailers?

  • Cho, Young-Sang;Chung, Ji-Bok;Kim, Su-Am;Lee, Kwang-Keun
    • Journal of Distribution Science
    • /
    • v.16 no.9
    • /
    • pp.5-11
    • /
    • 2018
  • Purpose - In recent, Japanese retailers have expanded their business into Korea, although Korean customers have anti-Japan sentiment in their mind, It is, thus, necessary to investigate how Korean customers react to Japanese retailers, when selecting a shopping place. Research design, data, and methodology - The authors have developed a research model with five hypotheses, based on the literature review process, and used confirmative factor analysis(CFA) as well as a structural equation model(SEM) as a research technique, in order to verify hypotheses. Results - All of hypotheses are accepted. Anti-Japan sentiment significantly influences consumer ethnocentrism and animosity. Interestingly, consumer ethnocentricity affects the formation process of animosity. Rather than ethnocentrism, animosity relatively influences customer attitudes towards Japanese retailers, when Korean customers choose a retailer. Conclusions - The authors found that anti-Japan sentiment has significantly affected Korean customer attitudes. In order for Japanese retailers to increase their market shares in the Korean market, they have to make a significant effort to alleviate the degree of anti-Japan sentiment, together with Japanese government. In contrast with research findings, Japanese retailers have done their business very well in Korea. Considering that Japanese retailers target younger customers in Korea, demographic elements should be involved in the future research.

Sentiment Dictionary Construction Based on Reason-Sentiment Pattern Using Korean Syntax Analysis (한국어 구문분석을 활용한 이유-감성 패턴 기반의 감성사전 구축)

  • Woo Hyun Kim;Heejung Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.142-151
    • /
    • 2023
  • Sentiment analysis is a method used to comprehend feelings, opinions, and attitudes in text, and it is essential for evaluating consumer feedback and social media posts. However, creating sentiment dictionaries, which are necessary for this analysis, is complex and time-consuming because people express their emotions differently depending on the context and domain. In this study, we propose a new method for simplifying this procedure. We utilize syntax analysis of the Korean language to identify and extract sentiment words based on the Reason-Sentiment Pattern, which distinguishes between words expressing feelings and words explaining why those feelings are expressed, making it applicable in various contexts and domains. We also define sentiment words as those with clear polarity, even when used independently and exclude words whose polarity varies with context and domain. This approach enables the extraction of explicit sentiment expressions, enhancing the accuracy of sentiment analysis at the attribute level. Our methodology, validated using Korean cosmetics review datasets from Korean online shopping malls, demonstrates how a sentiment dictionary focused solely on clear polarity words can provide valuable insights for product planners. Understanding the polarity and reasons behind specific attributes enables improvement of product weaknesses and emphasis on strengths. This approach not only reduces dependency on extensive sentiment dictionaries but also offers high accuracy and applicability across various domains.