• Title/Summary/Keyword: Construction temperature

Search Result 2,756, Processing Time 0.039 seconds

Characteristics of $CO_{2}$ Absorption and Degradation of Aqueous Alkanolamine Solutions in $CO_{2}$ and $CO_{2}-O_{2}$ System ($CO_{2}$$CO_{2}-O_{2}$ 시스템에서 알카놀아민류 흡수제를 이용한 $CO_{2}$ 흡수 및 흡수제 열화 특성)

  • Choi, Won-Joon;Lee, Jong-Seop;Han, Keun-Hee;Min, Byoung-Moo
    • Korean Chemical Engineering Research
    • /
    • v.49 no.2
    • /
    • pp.256-262
    • /
    • 2011
  • Amine can undergo irreversible reactions by $O_{2}$ and high temperature in amine scrubbing process and these phenomena are called "degradation". Degradation causes not only a loss of valuable amine, but also operational problems such as foaming, corrosion and fouling. In this study, using various chemical absorbents(MEA; monoethanolamine, AMP; 2-amino-2-methyl-1-propanol, DAM; 1,8-diamino-p-menthane), we examined the following variable. I) loading ratio of $CO_{2}$ at $50^{\circ}C$ and $120^{\circ}C$, ii) concentration variation and initial degradation rate constant of absorbent in $CO_{2}$ and $CO_{2}/O_{2}$ system, and iii) effect of degradation by $O_{2}$. The $CO_{2}$ loading of 20 wt% DAM was 400% and 270% higher than that of 20 wt% MEA and AMP at 50, respectively and was the largest the difference of $CO_{2}$ loading between absorption $(50^{\circ}C)$ and regeneration $(120^{\circ}C)$ condition. The initial degradation rate constant of 20 wt% DAM was $2.254{\times}10^{-4}cycle^{-1}$ which was slower than that of MEA $(2.761{\times}10^{-4}cycle^{-1})$ and AMP $(2.461{\times}10^{-4}cycle^{-1})$ in $CO_{2}$ system. Also, it was increased 30% by $O_{2}$ that effects on the degradation by $O_{2}$ was less than 100% increased. these degradation reactions was able to identify by formation of new peak in GC and FT-IR spectrum analysis.

Development of the Bittering, Acanthorhodeus(=Acheilognathus) gracilis (Cyprinidae), with a Note on Minute Tubercles on the Skin Surface (가시납지리의 난발생(卵發生)과 자어(仔魚)의 발육(發育) 및 자어(仔魚)의 표피상돌기(表皮上突起))

  • Suzuki, Nobuhiro;Jeon, Sang-Rin
    • Korean Journal of Ichthyology
    • /
    • v.2 no.2
    • /
    • pp.169-181
    • /
    • 1990
  • The development of eggs and larvae, and minute scale-like tubercles on the skin surface of larval Acantlaorhodeus gracilis from Korea were observed. They spawned from late March through the middle of June. A fish spawned at least 5 times and the number of eggs averaged 304 per oviposition. Unfertilized eggs are nearly ovoid-shaped(mean$\pm$SD=$2.09{\pm}0.04\;mm$ in length with range of 2.05 to 2.13 mm and mean$\pm$SD=$1.26{\pm}0.02\;mm$ in breadth with range of 1.24 to 1.30 mm measured for the 50 eggs) and opaque yellow color. The tip of egg membrane at the animal pole side swelled and formed a few hilly projections. The shape of the eggs was just like a loquat. Most of embryos began to hatch out in thirty-eight hours after insemination at $22{\pm}1^{\circ}C$ in water temperature. As regards the morphological characters of the eggs and larval development, Acan. gracilis was similar to Acan. asmussi, Acheilognathus rhombeus, A. longipinnis and Pseudoperilampus typus. The larvae of this species is unique particularly in the following two characters, i.e., 1) scale-like tubercles ellipsoided in a diagonal cross section on the whole body and 2) incessant wiggly movement pattern as that of fly maggot, with the larvae of the above mentioned species. These characters seem to reflect the phylogenetic relationships among acheilognathine fishes. On the other hand, this species and Acan. asmussi are spring-summer spawning bitterlings. And also these species never retard the larval growth in such larval stage as the duration from Stage B to Stage D.

  • PDF

Weathering Sensitivity Characterization for Rock Slope, Considering Time Dependent Strength Changes (시간에 따른 강도변화를 고려한 암반사면의 풍화민감특성 분석)

  • Lee Jeong-Sang;Bae Seong-Ho;Yu Yeong-Il;Oh Joung-Bae;Lee Du-Hwa;Park Joon-Young
    • Tunnel and Underground Space
    • /
    • v.16 no.2 s.61
    • /
    • pp.109-134
    • /
    • 2006
  • Rocks undergo weathering processes influenced by changing in pressure-temperature condition, atmosphere, underground water, and rainfall. The weathering processes change physical and chemical characteristics of the rocks. Once the rocks are weathered, the characteristics of them are changed and, because of the changing, several disadvantages such as rock slope failures and underground water spouts are can occur. Before we cut a large rock slope, therefore, we must analyze current weathering conditions of rocks and predict weathering processes in the future. Through the results of such analyses, we can judge reinforcement works. In order to comply with such requests, chemical weathering sensitivity analysis which was analyzed from chemical weathering velocities and other characteristics of rocks has been applied in several prior construction works in Korea. But, It is defective to use directly in engineering fields because it was developed for soils(not rocks), it has too mny factors must be considered and the relationships between the factors are not clear, and it is hard to explain the weathering processes in engineering time range. Besides above, because it has been used for isotropic rocks, this method is hard to apply to anisotropic rocks such as sedimentary rocks. Acceding to studies from morphologists (e.g. Oguchi et al., 1994; Sunamura, 1996; Norwick and Dexter, 2002), time dependent strength reduction influenced by weathering shows a negative exponential function form. Appling this relation, one can synthesize the factors which influence the weathering processes to the strength reduction, and get meaningful estimates in engineering viewpoint. We suggest this weathering sensitivity characterization method as a technique that can explain time dependent weathering sensitivity characteristics through strength changes and can directly applied the rock slope design.

Interpretation of Limestone Provenance, Materials and Making Characteristics for Lime-Soil Mixture on Tomb Barrier of the Yesan Mokri Site in Joseon Dynasty (조선시대 예산 목리유적 회격묘의 재질 및 제작특성과 석회의 산지 해석)

  • Lee, Chan Hee;Cho, Ji Hyun;Kim, Jiyoung
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.471-490
    • /
    • 2016
  • This study investigated provenance of raw materials and making technique of lime-based materials used in the tomb barriers of the Yesan Mokri tombs from Joseon dynasty on the basis of analysis to material characteristics and physical properties. In the barrier materials, dry density and porosity are the highest value ($1.82g/cm^3$) and the lowest value (25.20%) in the south wall of No. 1 tomb, respectively. Dry density and porosity are inversely proportional in all barrier materials, but unconfined compressive strength, which is the highest value of $182.36kg/cm^2$ in the No. 2 tomb, does not show an interrelation with porosity and density. Mineral components in the lime-soil mixtures of the tomb barrier are mainly quartz, feldspar, mica and calcite about 200 to $600{\mu}m$ size with yellowish brown matrix. Hydrotalcite and portlandite are detected in the lime mixture, and kaolinite in the soils. The lime materials of the tomb barrier occurred in large quantities weight loss and variable endothermic peaks caused by decarbonization reaction of $CaCO_3$ in the range from 600 to $800^{\circ}C$ in thermal analysis. Making temperature of lime for the tomb barrier is presumed approximately about $800^{\circ}C$ based on the occurrences, compositions and thermal analysis. The tomb barriers are revealed to very wide composition ranges of major elements and loss-on-ignition (22.5 to 33.6 wt.%) owing to mixture of the three materials (lime, sand and clay). It is interpreted that low quality construction technique was applied as the limes are very heterogeneous mixture with aggregates, and curing of the lime was poorly processed in the tomb barriers. Possible limestone sources are distributed in many areas around the Mokri site where limestone conformation and quarries for commercial production are found within Yesan and Hongseong areas. Therefore, we estimated that raw materials were possibly supplied from the local mines near the Mokri site.

Characteristics of Shear Strength and Elastic Waves in Artificially Frozen Specimens using Triaxial Compression Tests (삼축압축실험을 이용한 인공동결시료의 강도평가 및 탄성파 특성변화)

  • Kim, JongChan;Lee, Jong-Sub;Hong, Seung-Seo;Lee, Changho
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.111-122
    • /
    • 2014
  • For accurate laboratory evaluations of soil deposits, it is essential that the samples are undisturbed. An artificial ground-freezing system is the one of the most effective methods for obtaining undisturbed samples from sand deposits. The objective of this study is to estimate the shear strengths and the characteristics of elastic waves of frozen-thawed and unfrozen specimens through the undrained triaxial compression test. For the experiments, Jumunjin standard sands are used to prepare frozen and unfrozen specimens with similar relative densities (60% and 80%). The water pluviation method is used to simulate the fully saturated condition under the groundwater table. When thawing the frozen specimens, the temperature is measured every minute. After the specimens are completely thawed, undrained triaxial compression tests are conducted using the same procedures as for the unfrozen specimens. During the triaxial tests (saturation, consolidation, and shear phase), compressional and shear waves are measured. The results show that the freeze-thaw process has minor effects on the peak deviatoric stress and shear strength values, and that the process does not affect the internal friction angle. The compressional wave velocity increases with increasing B-value to 1800 m/s in the saturation phase, but tends to remain constant in the process of consolidation and shearing. The shear wave velocity decreases with increasing B-value in the process of saturation, but changes velocity in accordance with the change in effective stress in the processes of consolidation and shearing. The compressional wave velocity has similar values regardless of the freeze-thaw process, but values of shear wave velocity are slighly lower in frozen-thawed specimens than in unfrozen specimens. This study is a preliminary experiment for estimating the shear strength and characteristics of elastic wave velocity in undisturbed frozen specimens that have been obtained using the artificial ground-freezing method.

The properties of optical glass of BaO-GeO2-La2O3 system with ZnO (ZnO가 포함된 BaO-GeO2-La2O3 계 광학 유리 특성)

  • Lee, Ji-Sun;Lim, Tae-Young;Hwang, Jonghee;Lee, Youngjin;Jeon, Dae-Woo;Kim, Sun-Woog;Ra, Yong-Ho;Kim, Jin-Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.5
    • /
    • pp.208-214
    • /
    • 2019
  • The glass of $BaO-GeO_2-La_2O_3-ZnO$ system with a transmittance of more than 75 % at mid-wave infrared (MWIR) region in the range of $3{\mu}m$ to $5{\mu}m$ is manufactured and its property is evaluated. After selecting construction that can melt glass through flow button test, $BaO-GeO_2-La_2O_3$ system where 10 mol%, 20 mol% of ZnO were added respectively were melted at $1350^{\circ}C$ for 1 hour and $BaO-GeO_2-La_2O_3$ system of glass was manufactured. Among them, with 20 mol% of ZnO, 16 mol% BaO-56 mol% $GeO_2-8mol%$ $La_2O_3-16mol%$ ZnO system of glass was found to has less than $660^{\circ}C$ of glass transition temperature, more than 1.70 of refractive index, and more than 530 of knoop hardness. Therefore, it is concluded that glass of $BaO-GeO_2-La_2O_3-ZnO$ system of glass with 20 mol% ZnO has good melting conditions at low temperatures and excellent optical properties, thus, can be utilized for special optical materials field.

Water quality characteristics and spatial distribution of phytoplankton during dry and rainy seasons in Bunam Lake and Cheonsu Bay, Korea (부남호·천수만의 갈수기와 강우기 수질 오염 특성과 식물플랑크톤의 공간 분포 특성)

  • Lee, Minji;Seo, Jin Young;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.184-194
    • /
    • 2021
  • Since the construction of a dike in 1983, the water quality in the Bunam Lake has continued to deteriorate due to algal bloom caused by agricultural nutrient loading. Therefore, we evaluated the change in water quality and phytoplankton ecological characteristics in Bunam Lake and Cheonsu Bay, Korea. Water temperature, salinity, dissolved oxygen, chemical oxygen demand (COD), chlorophyll, and phytoplankton community were surveyed in April during the dry season and in July during the rainy reason. As a result, during the dry period, phytoplankton proliferated greatly and stagnated in the Bunam Lake while a very high population of cyanobacteria Oscillatoria spp. (8.61×107 cells L-1) was recorded. Most of the nutrients, except, nitrate and nitrite, were consumed due to the large growth of phytoplankton. However, during the rainy period, concentrations of ammonia, phosphate, silicate, nitrate, and nitrite, were very high towards the upper station due to the inflow of fresh water. Cyanobacteria Oscillatoria and Microcystis spp. were dominant in the Bunam Lake during the rainy period. Even in the Cheonsu Bay, cyanobacteria dominated due to the effect of discharge and diatoms, such as, Chaetoceros spp. and Eucampia zodiacus, which also proliferated significantly due to increased levels of nutrients. Since the eutrophication index was above 1 in Bunam Lake, it was classified as eutrophic water and the Cheonsu Bay was classified as eutrophic water only during the rainy season. In addition, a stagnant seawater-derived hypoxia water mass was observed at a depth of8m in the Bunam Lake adjacent to the tide embankment and the COD concentration reached 206 mg L-1 in the bottom layer at B3. Based on this result, it is considered that the water quality will continue to deteriorate if organic matters settle due to continuous inflow of nutrients and growth of organisms while the bottom water mass is stagnant.

Experimental Transplantation for the Restoration of Seagrass, Zostera marina L. Bed Around Sinyangseopji Beach in Bangdu Bay, Jeju Island (제주 신양섭지해수욕장 주변 방두만 거머리말 군락 복원을 위한 실험적 이식)

  • LEE, HYUNG WOO;KANG, JEONG CHAN;PARK, JUNG-IM;KIM, MYUNG SOOK
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.4
    • /
    • pp.343-355
    • /
    • 2021
  • Eelgrass, Zostera marina L., was widely distributed around Sinyangseopji Beach in Bangdu Bay, on the eastern coast of Jeju Island, until breakwater construction in the late 1990s resulted in its complete loss. Six experimental sites were identified for restoration of the Z. marina bed in Bangdu Bay. Using the staple method, 500 Z. marina shoots were transplanted at each site in January 2019 and 2020. The transplants, along with environmental parameters, were monitored for 10 months following transplantation. There were significant differences in underwater irradiance, water temperature, and salinity among the sites, but all were suitable for Z. marina growth. The Ulva species, an opportunistic alga, appeared in spring and accumulated during summer at all sites; however, there was no significant effect of Ulva species on the survival and growth of the eelgrass transplants. Most of the transplanted Z. marina survived, and after 3 months, the density increased by 112.5-300% due to vegetative propagation, with a rapid rate of increase observed during spring and early summer at all sites. For 1-2 months after transplanting, the Z. marina shoots showed signs of transplant shock, after which the shoot density increased at all sites, confirming that all transplants adapted well to the new environment. However, in both 2019 and 2020, during late summer to early fall, the sites experienced heavy damage from typoons (twice in 2019 and three times in 2020) that hit Bangdu Bay. The transplants at two sites located in the center of Bangdu Bay were completely destroyed, but those at three sites located to the west of the bay showed a 192-312% increase in density. Thus, we confirmed that the Bangdu Bay Z. marina bed can be restored, with the highest probability of success for Z. marina restoration on the western side of Bangdu Bay, which is protected from typhoons.

Ecological Renewal Plan of Urban Parks for the Revitalization of Urban Green Axis in Gangdong-Gu (강동구 도시 녹지축 기능 활성화를 위한 도시공원의 생태적 리뉴얼 방안 연구)

  • Park, Jeong-Ah;Han, Bong-Ho;Kwak, Jeong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.12-27
    • /
    • 2023
  • In this study, among the construction-type parks in Gangdong-gu, targeting parks with high environmental and ecological value located on the urban green axis, a plan was prepared for the ecological renewal of urban parks, and a design that applied to them was proposed. The renewal target site was selected by analyzing the general condition of Gangdong-gu and urban parks, the land use and green area ratio, park green area, and the green axis of Gangdong-gu. Gangdong-gu has 54 parks, including 2 neighborhood parks and 52 children's parks. In the first stage of the current status review, 17 parks were extracted through locational value analysis, such as location and adjacency to the natural axis and green axis. In the second stage, eight parks were selected among the first-stage extraction parks based on the ratio of green spaces and open spaces within each park service area. In the third stage, two of the second stage extraction parks were selected based on whether the legal standard of the park area was met, and in the fourth stage, one of the third stage extraction parks was selected through an aging survey of the park. As for the urban ecological status of the renewal target site, the status of land use in the aspect of entropy reduction, the status of soil cover in the aspect of water circulation, and the status of planting structure in the aspect of biodiversity were investigated. As for the status of the three renewal sites, the green area was insufficient at 18.3-45.3%, and the facility area was 54.7%-81.7%, which was judged to have low urban temperature reduction effects. The impervious pavement area accounted for 34.5% to 48.9% of the park area, accounting for most of the facility area, and it was judged that the water circulation function was insufficient. The planting structure consisted of a single layer and a double layer structure, and although the tree layer was good, the lower vegetation was poor, and there was no planting site of edible plants or large hardwood trees, so the biodiversity was low. After the ecological renewal design of Seonrin Children's Park, Dangmal Children's Park, and Saemmul Children's Park, which were selected as the renewal targets in this study, the ecological area ratio of each park increased by 1.4 to 3 times than before the renewal. If the urban parks located on the urban green axis are examined from the perspective of the urban ecosystem and renewed ecologically, it is judged that the expected effect will be high in reducing entropy, improving water circulation, and laying the foundation for biodiversity in terms of the urban ecosystem.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.