• Title/Summary/Keyword: Construction phases

Search Result 433, Processing Time 0.024 seconds

Thermal property of geopolymer on fly ash-blast furnace slag system with the addition of alumina aggregate (알루미나 골재 첨가에 따른 플라이애쉬-고로슬래그계 지오폴리머의 열적특성)

  • Kim, Jin-Ho;Nam, In-Tak;Park, Hyun;Kim, Kyung-Nam
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.1
    • /
    • pp.47-56
    • /
    • 2017
  • In this study, the higher temperature thermal property of the fly ash-blast furnace slag system Geopolymer including alumina aggregate was investigated whether that Geopolymer will be or not useful as thermal-resistant construction materials. Under every mixing conditions, the crack on the surface of hardened body was not observed up to $800^{\circ}C$ and it corresponded with fact that level of changes was not significant before and after heating process. Residual compressive strength is most high when mixing Blast-Furnace Slag ratio is 60 wt% until temperature reaches $800^{\circ}C$. The major hydrates of hardened body of Geopolymer; amorphous halo pattern between $20{\sim}35^{\circ}$ (2theta) and mullite ($3Al_2O_3{\cdot}2SiO_2$) and quartz ($SiO_2$) was found during the experiment. Amorphous halo pattern was a aluminosilicate gel generated by geopolymeric polycondensation and it was found that the halo pattern of aluminosilicate gel was preserved up to $800^{\circ}C$. The patterns of aluminosilicate gel disappeared from $1,000^{\circ}C$ and crystal phases like gehlenite, calcium silicate, calcium aluminum oxide, microcline was observed with the increase of exposure temperature.

Transitions of Urban Parks in Busan noticed by the Chosun Planning Ordinance in the Japanese Colonial Period (일제강점기 조선시가지계획령에 고시된 부산 소재 도시공원의 변천)

  • Kim, Yeong-Ha;Yoon, Guk-Bin;Kang, Young-Jo
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.45 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • This study investigated the process of change of 32 urban parks designated during the period of Japanese colonial rule according to growth and development of the city in Busan. Particularly, researching included analyizing books, notification, data, and documents relevant to the history of urban planning published by Busan city. As a result, Daejeong Park, Gokwan Park, and Yongdusan Park had been utilized by Japanese residents under the Japanese colonial rule before planning of urban parks, and 32 parks legally specified in 1944 were planned by considering the prevention against disasters. After emancipation, there were an unauthorized building, housing construction, business district, public office, and school facility in the sites of the parks due to the influence of the Korean War and reorganization of urban planning. The majority of parkways and small parks downtown were eliminated. However, unexecuted parks that the government had designed on the edge of town during the Japanese colonial period have become major parks downtown through the city's growth. Yeonji Park, Yangjeong Park, and Danggok Park have been being building as a business of parks for a comfortable city, forming downtown along with the Green-Busan Policy. Thus, 32 parks designated under the Japanese colonial rule have made or got out of use reflecting on the phases of the times of modern Korean society. It turns out that these parks need an investigation about condition for land possession and purchase of the site of the parks in order for social common capital.

Implementation on the evolutionary machine learning approaches for streamflow forecasting: case study in the Seybous River, Algeria (유출예측을 위한 진화적 기계학습 접근법의 구현: 알제리 세이보스 하천의 사례연구)

  • Zakhrouf, Mousaab;Bouchelkia, Hamid;Stamboul, Madani;Kim, Sungwon;Singh, Vijay P.
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.395-408
    • /
    • 2020
  • This paper aims to develop and apply three different machine learning approaches (i.e., artificial neural networks (ANN), adaptive neuro-fuzzy inference systems (ANFIS), and wavelet-based neural networks (WNN)) combined with an evolutionary optimization algorithm and the k-fold cross validation for multi-step (days) streamflow forecasting at the catchment located in Algeria, North Africa. The ANN and ANFIS models yielded similar performances, based on four different statistical indices (i.e., root mean squared error (RMSE), Nash-Sutcliffe efficiency (NSE), correlation coefficient (R), and peak flow criteria (PFC)) for training and testing phases. The values of RMSE and PFC for the WNN model (e.g., RMSE = 8.590 ㎥/sec, PFC = 0.252 for (t+1) day, testing phase) were lower than those of ANN (e.g., RMSE = 19.120 ㎥/sec, PFC = 0.446 for (t+1) day, testing phase) and ANFIS (e.g., RMSE = 18.520 ㎥/sec, PFC = 0.444 for (t+1) day, testing phase) models, while the values of NSE and R for WNN model were higher than those of ANNs and ANFIS models. Therefore, the new approach can be a robust tool for multi-step (days) streamflow forecasting in the Seybous River, Algeria.

Historical Studies on the Characteristics of Taeaek Pond at Changdeok Palace (창덕궁 태액지의 조영사적 특성)

  • Jung, Woo-Jin;Sim, Woo-Kyung
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.30 no.2
    • /
    • pp.46-63
    • /
    • 2012
  • The object of this study was to analyze the speciality of Korean traditional waterscape and unique landscape formed with reflection of the phases of the time sat the area of Juhabru(宙合樓) in Changdeok Palace as a basic research to find the prototype of Taeaek pond at Changdeok Palace and restoration of the palace. Originally, Taeaek pond at Changdeok Palace was constructed in KingInjo(仁祖) period as a name of Yongji(龍池), later it called Taeaek pond after King Sukjong(肅宗). There is an island as a symbol of the immortal isle, and Chungseojeong(淸署亭), Taiksujae(澤水齋) and Buyongjeong(芙蓉亭) which were built to view the waterscape in Taeaek pond. Buildings were built asymmetrical balance around Taeaek pond because of the morphological character of tetragonal pond. Arrangement of this area has a definite form of axial structure. Yeolgokwan(閱古觀) Gaeyuwa(皆有窩), pavilions, bridges, islands, Osumoon(魚水門) and Juhabru are located on the north and south axis, and island and Osumoon play a role as a intersection and form an east of west axis. In this study, manual of construction for an island and pavilions is provided by analyzing transformational process of island and pavilions at Taeaek pond. Furthermore, kings and officials used to statically enjoy the view around Taeaek pond area, but dynamic fishing and boating activity happened in King Jungjo(正祖) period. These historical backgrounds have an influence on the spatial organization of Taeaek pond. For instance, bridge between Taeaek pond and island was destroyed with the increase of the importance of boating. Symbolic structure around Taeaek pond means 'fish changes to dragon' and 'both of king and officials become one'. Taiksujai, carving fish, Osumoon and Juhabru are provided as a related spatial factors.

Interaction Experiment on Chloride Ion Adsorption Behavior of C-S-H Phases (C-S-H 상의 염소이온 흡착 메커니즘 규명을 위한 반응 작용 실험)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.29 no.1
    • /
    • pp.65-75
    • /
    • 2017
  • C-S-H phase is the most abundant reaction product, occupying about 50~60% of cement paste volume. The phase is also responsible for most of engineering properties of cement paste. This is not because it is intrinsically strong or stable, but because it forms a continuous layer that binds together the original cement particles into a cohesive whole. The binding ability of C-S-H phase arises from its nanometer-level structure. In terms of chloride penetration in concrete, C-S-H phase is known to adsorb chloride ions, however, its mechanism is very complicated and still not clear. The purpose of this study is to examine the interaction between chloride ions and C-S-H phase with various Ca/Si ratios and identify the adsorption mechanism. C-S-H phase can absorb chloride ions with 3 steps. In the C-S-H phase with low Ca/Si ratios, momentary physical adsorption could not be expected. Physical adsorption is strongly dependent on electro-kinetic interaction between surface area of C-S-H phase and chloride ions. For C-S-H phase with high Ca/Si ratio, electrical kinetic interaction was strongly activated and the amount of surface complexation increased. However, chemical adsorption could not be activated for C-S-H phase with high Ca/Si ratio. The reason can be explained in such a speculation that chloride ions cannot be penetrated and adsorbed chemically. Thus, the maximum chloride adsorption capacity was obtained from the C-S-H phase with a 1.50 Ca/Si ratio.

Improved Socio-Economic Status of a Community Population Following Schistosomiasis and Intestinal Worm Control Interventions on Kome Island, North-Western Tanzania

  • Mwanga, Joseph R.;Kaatano, Godfrey M.;Siza, Julius E.;Chang, Su Young;Ko, Yunsuk;Kullaya, Cyril M.;Nsabo, Jackson;Eom, Keeseon S.;Yong, Tai-Soon;Chai, Jong-Yil;Min, Duk-Young;Rim, Han-Jong;Changalucha, John M.
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.5
    • /
    • pp.553-559
    • /
    • 2015
  • Research on micro-level assessment of the changes of socio-economic status following health interventions is very scarce. The use of household asset data to determine wealth indices is a common procedure for estimating socio-economic position in resource poor settings. In such settings information about income is usually lacking, and the collection of individual consumption or expenditure data would require in-depth interviews, posing a considerable risk of bias. In this study, we determined the socio-economic status of 213 households in a community population in an island in the north-western Tanzania before and 3 year after implementation of a participatory hygiene and sanitation transformation (PHAST) intervention to control schistosomiasis and intestinal worm infections. We constructed a household 'wealth index' based housing construction features (e.g., type of roof, walls, and floor) and durable assets ownership (e.g., bicycle, radio, etc.). We employed principal components analysis and classified households into wealth quintiles. The study revealed that asset variables with positive factor scores were associated with higher socio-economic status, whereas asset variables with negative factor scores were associated with lower socio-economic status. Overall, households which were rated as the poorest and very poor were on the decrease, whereas those rated as poor, less poor, and the least poor were on the increase after PHAST intervention. This decrease/increase was significant. The median shifted from -0.4376677 to 0.5001073, and the mean from -0.2605787 (SD; 2.005688) to 0.2605787 (SD; 1.831199). The difference in socio-economic status of the people between the 2 phases was highly statistically significant (P<0.001). We argue that finding of this study should be treated with caution as there were other interventions to control schistosomiasis and intestinal worm infections which were running concurrently on Kome Island apart from PHAST intervention.

Development of the Dredged Sediments Management System and Its Managing Criteria of Debris Barrier (사방댐 준설퇴적물 관리시스템 개발 및 관리기준 제안)

  • Song, Young-Suk;Yun, Jung-Mann;Jung, In-Keun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2018
  • The dredged sediment management system was developed to have an objective, quantitative and scientific decision for the optimum removal time of dredged sediments behind debris barrier and was set up at the real site. The dredged sediment management system is designed and developed to directly measure the dredged sediments behind debris barrier in the field. This management system is composed of Data Acquisition System (DAS), Solar System and measurement units for measuring the weight of dredge sediments. The weight of dredged sediments, the water level and the rainfall are measured in real time using the monitoring sensors, and their data can be transmitted to the office through a wireless communication method. The monitoring sensors are composed of the rain gauge to measure rainfall, the load cell system to measure the weight of dredged sediments, and water level meter to measure the water level behind debris barrier. The management criteria of dredged sediments behind debris barrier was suggested by using the weight of dredged sediments. At first, the maximum weight of dredged sediments that could be deposited behind debris barrier was estimated. And then when 50%, 70% and 90% of the maximum dredged sediments weight were accumulated behind debris barrier, the management criteria were divided into phases of Outlooks, Watch and Warning, respectively. The weight of dredged sediments can be monitored by using the dredged sediment management system behind debris barrier in real time, and the condition of debris barrier and the removal time of dredged sediments can be decided based on monitoring results.

Comparative Study on the Growth Condition of Landscape Woody Plants according to the Ground Structure - Focusing on Manseok Beach Town Complex 2, Incheon - (지반구조에 따른 수목 생육상태 비교 연구 - 인천광역시 만석비치타운 단지를 대상으로 -)

  • Cho, Sung-Ho;Han, Bong-Ho;Park, Seok-Cheol
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.3
    • /
    • pp.63-82
    • /
    • 2022
  • The purpose of this study is to compare growth condition of landscape woody plants growing on the different ground structures in apartment complex. I chose Manseok Beach Town Complex 2, in Manseok-dong, Seo-gu, Incheon which has both natural and artificial ground as a subject site. Analysis of three phases of soil showed that artificial ground had average liquid phase of 30.89%, artificial ground mounding 33.88% and natural ground 24.40%. It means that artificial ground has higher water content than natural ground despite having same earthiness. It is believed that artificial ground is not as well drained as natural ground even though it is connected to the natural ground and has a deep soil depth because of mounding. Comparative study between woody plants on natural ground and those on artificial ground demonstrated that trees on natural ground grew 40.4% compared to those on artificial ground(0.875mm more) in terms of diameter growth. Average diameter growth of trees on natural ground was 3.040mm against 2.165mm for those on artificial ground. All 19 tree species which were measured for root diameter growth showed similar or higher growth on natural ground than on artificial ground. When it comes to growth of height, arborvitae showed highest growth on natural ground, followed by Thuja occidentalis, Pinus strobus, Magnolia denudata, Diospyros kaki and Aesculus turbinata. I measured branch growth and rate of leaf adherence of Pinus strobus. Average annual rate of branch growth of woody plants on natural ground was twice as high as those on artificial ground. I could conclude that ground structure influences branch growth of Pinus strobus. Statistics analysis of tree damage demonstrated significant result, meaning that there is a difference in the average damage rate depending on structure of ground. In order to validate growth difference by planting ground, I conducted T-Test of growth of diameter, root diameter, branch and height on woody plants growing on natural and artificial ground. As a result, it is believed that there is a difference in the growth of trees depending on the ground structure. Putting all these results together demonstrates that woody plants on natural ground generally grow better than those on artificial ground, which means ground structure does have an influence on the environment of growth of trees.

The Future of NVH Research - A Challenge by New Powertrains

  • Genuit, Ing. K.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2010.05a
    • /
    • pp.48-48
    • /
    • 2010
  • Sound quality and NVH-issues(Noise, Vibration and Harshness) of vehicles has become very important for car manufacturers. It is interpreted as among the most relevant factors regarding perceived product quality, and is important in gaining market advantage. The general sound quality of vehicles was gradually improved over the years. However, today the development cycles in the automotive industry are constantly reduced to meet the customers' demands and to react quickly to market needs. In addition, new drive and fuel concepts, tightened ecological specifications, increase of vehicle classes and increasing diversification(increasing market for niche vehicles), etc. challenge the acoustic engineers trying to develop a pleasant, adequate, harmonious passenger cabin sound. Another aspect concerns the general pressure for reducing emission and fuel consumption, which lead to vehicle weight reductions through material changes also resulting in new noise and vibration conflicts. Furthermore, in the context of alternative powertrains and engine concepts, the new objective is to detect and implement the vehicle sound, tailored to suit the auditory expectations and needs of the target group. New questions must be answered: What are appropriate sounds for hybrid or electric vehicles? How are new vehicle sounds perceived and judged? How can customer-oriented, client-specific target sounds be determined? Which sounds are needed to fulfil the driving task, and so on? Thus, advanced methods and tools are necessary which cope with the increasing complexity of NVH-problems and conflicts and at the same time which cope with the growing expectations regarding the acoustical comfort. Moreover, it is exceedingly important to have already detailed and reliable information about NVH-issues in early design phases to guarantee high quality standards. This requires the use of sophisticated simulation techniques, which allow for the virtual construction and testing of subsystems and/or the whole car in early development stages. The virtual, testing is very important especially with respect to alternative drive concepts(hybrid cars, electric cars, hydrogen fuel cell cars), where complete new NVH-problems and challenges occur which have to be adequately managed right from the beginning. In this context, it is important to mention that the challenge is that all noise contributions from different sources lead to a harmonious, well-balanced overall sound. The optimization of single sources alone does not automatically result in an ideal overall vehicle sound. The paper highlights modern and innovative NVH measurement technologies as well as presents solutions of recent NVH tasks and challenges. Furthermore, future prospects and developments in the field of automotive acoustics are considered and discussed.

  • PDF

Global Trends of In-Situ Resource Utilization (우주 현지자원활용 글로벌 동향 )

  • Dong Young Rew
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.199-212
    • /
    • 2023
  • In contrast to the short-term nature of lunar missions in the past, lunar missions in new space era aim to extend the presence on the lunar surface and to use this capability for the Mars exploration. In order to realize extended human presence on the Moon, production and use of consumables and fuels required for the habitation and transportation using in-situ resources is an important prerequisite. The Global Exploration Roadmap presented by the International Space Exploration Coordination Group (ISECG), which reflects the space exploration plans of participating countries, shows the phases of progress from lunar surface exploration to Mars exploration and relates in-situ resource utilization (ISRU) capabilities to each phase. Based on the ISRU Gap Assessment Report from the ISECG, ISRU technology is categorized into in-situ propellant and consumable production, in-situ construction, in-space manufacturing, and related areas such as storage and utilization of products, power systems required for resource utilization. Among the lunar resources, leading countries have prioritized the utilization of ice water existing in the permanent shadow region near the lunar poles and the extraction of oxygen from the regolith, and are preparing to investigate the distribution of resources and ice water near the lunar south pole through unmanned landing missions. Resource utilization technologies such as producing hydrogen and oxygen from water by hydroelectrolysis and extracting oxygen from the lunar regolith are being developed and tested in relevant lunar surface analogue environments. It is also observed that each government emphasizes the use and development of the private sector capabilities for sustainable lunar surface exploration by purchasing lunar landing services and providing opportunities to participate in resource exploration and material extraction.