• Title/Summary/Keyword: Construction information structure

Search Result 1,013, Processing Time 0.026 seconds

$Gei^3ta^1$ in Taiwan Mandarin--- A Particular Construction

  • Lee, Chia-Chun
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.268-274
    • /
    • 2007
  • The present paper investigates a particular structure in Taiwan Mandarin, "(NP) + (intensifier) + $gei^3ta^1$ "give him/it"+ adjective" in terms of construction grammar. The structure is mostly observed in utterances of younger generation. Though it is not regarded as a grammatical or standard structure, it is still a register of language. The structure lays emphasis on speaker's attitude toward an undesired, unpleasant event. In most cases, the attitude tends to be negative. The events or propositions must have existed or been completed. The adjectives compatible with this structure belong to category of higher degree. The grammatical usage illustrates semantic bleaching of $gei^3ta^1$. And the changes from giving to a grammatical particle denoting subjective belief is a kind of subjectification. Moreover, $ta^1$ could refer to events or situation expressed by a more complicated grammatical structure, or denotes nothing as a dummy word. Though many previous studies paid attention to the newly developed structure resulted from language contact, the adequate account was not provided. It is hoped through this investigation, we will get a better understanding of this particular structure.

  • PDF

Structure-From-Motion Approach to the Reconstruction of Surfaces for Earthwork Planning

  • Nassar, Khaled;Jung, Young-Han
    • Journal of Construction Engineering and Project Management
    • /
    • v.2 no.3
    • /
    • pp.1-7
    • /
    • 2012
  • The reconstruction of surfaces from unorganized point clouds can provide very useful information for construction managers. Although point clouds are generally created using 3D scanners, they can also be generated via the structure-from-motion technique using a sequence of images. Here we report a novel surface reconstruction technique for modeling and quantifying earthworks that can be used for preliminary planning, project updates and estimating of earthwork quantities, as well as embedded planning systems in construction equipment. The application of structure-from-motion techniques in earth works is examined and its advantages and limitations identified. Data from 23 earthwork excavation construction sites were collected and analyzed. 3D surface reconstructions during the construction phase were compared to the original land form. Similar experiments were conducted with piles of earth and the results analyzed to determine appropriate ranges of use for structure-from-motion surface reconstructions in earthwork applications. The technique was found to be most suited to pile of materials with volumes less than 2000 m3. Piles up to 10 m in height and with base areas up to $300m^2$ were also successfully reconstructed. These results should be of interest to contractors seeking to utilize new technology to optimize operational efficiency.

Expertise Service Model Aiding Local Information Writing on the Web (PC통신과 웹에서 지역알림정보의 작성을 돕는 전문가적인 서비스 모형에 관한 연구: 지역주민의 견문을 중심으로)

  • 이태영
    • Journal of the Korean Society for information Management
    • /
    • v.16 no.1
    • /
    • pp.89-117
    • /
    • 1999
  • (1) structure of writings, (2) construction of paragraphs. (3) structure of sentences, (4) use of words were most important things on local information composition. To be expertise system, the Knowledge-base had the writing frames for essay structure and paragraph frames for construction of paragraph. To refer to the clause and sentence structure and to the use of words, Example dictionaries were offered. It is necessary to make nore precise rule for (1) extracting subject name of the frames and (2) making representative word of sentences for advanced system in the future.

  • PDF

Automated Methodology for Linking BIM Objects with Cost and Schedule Information by utilizing Geometry Breakdown Structure (GBS)

  • Lee, Kwangjin;Jung, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.637-638
    • /
    • 2015
  • There has been growing interests in life-cycle project management in the construction industry. A lot of attention is given to Building Information Modeling (BIM) which stores and uses a variety of construction information for the life cycle of project management. However, due to the additional workload arising from BIM, its expected effects versus its input costs are still under discussion in practice. As an attempt to address this issue, one of previous studies suggested an automated linking process by developing Standard Classification Numbering System (SCNS) and Geometry Breakdown Structure (GBS) to enhance the efficiency of integration process of BIM objects, cost, and schedule. Though SCNS and GBS facilitates identifying all different dataset, making object sets and linking schedule activities still needs to be manually done without having an automated tool. In this context, the purpose of this paper is to develop and validate a fully automated integration system for 3D-objects, cost, and schedule. A prototype system for single family homes (Hanok) was developed and tested in order to verify its efficiency.

  • PDF

A Framework on 3D Object-Based Construction Information Management System for Work Productivity Analysis for Reinforced Concrete Work (철근콘크리트 공사의 작업 생산성 분석을 위한 3차원 객체 활용 정보관리 시스템 구축방안)

  • Kim, Jun;Cha, Heesung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.19 no.2
    • /
    • pp.15-24
    • /
    • 2018
  • Despite the recognition of the need for productivity information and its importance, the feedback of productivity information is not well-established in the construction industry. Effective use of productivity information is required to improve the reliability of construction planning. However, in many cases, on-site productivity information is hardly management effectively, but rather it relies on the experience and/or intuition of project participants. Based on the literature review and expert interviews, the authors recognized that one of the possible solutions is to develop a systematic approach in dealing with productivity information of the construction job-sites. It is required that the new system should not be burdensome to users, purpose-oriented information management, easy-to follow information structure, real-time information feedback, and productivity-related factor recognition. Based on the preliminary investigations, this study proposed a framework for a novel system that facilitate the effective management of construction productivity information. This system has utilized Sketchup software which has good user accessibility by minimizing additional data input and related workload. The proposed system has been designed to input, process, and output the pertinent information through a four-stage process: preparation, input, processing, and output. The inputted construction information is classified into Task Breakdown Structure (TBS) and Material Breakdown Structure (MBS), which are constructed by referring to the contents of the standard specification of building construction, and converted into productivity information. In addition, the converted information is also graphically visualized on the screen, allowing the users to use the productivity information from the job-site. The productivity information management system proposed in this study has been pilot-tested in terms of practical applicability and information availability in the real construction project. Very positive results have been obtained from the usability and the applicability of the system and benefits are expected from the validity test of the system. If the proposed system is used in the planning stage in the construction, the productivity information and the continuous information is accumulated, the expected effectiveness of this study would be conceivably further enhanced.

3D BIM Modeling of Temporary Structure for Earthwork using Parametric Technique (파라메트릭 기술을 이용한 토공용 임시 구조물의 3D BIM 모델링)

  • Tanoli, Waqas Arshad;Raza, Hassnain;Lee, Seung-Soo;Park, Sang-Il;Seo, Jong-won
    • Journal of KIBIM
    • /
    • v.8 no.2
    • /
    • pp.1-9
    • /
    • 2018
  • Nowadays Building Information Modeling (BIM) is a significant source of sharing project information in the construction industry. This method of sharing the information enhances the project understanding among stakeholders. Modeling of information using BIM is becoming an essential part of many construction projects around the globe. Despite rapid adoption of BIM in construction industry still, some sectors of the industry like earthwork have not yet reaped its full benefits. BIM has brought a paradigm shift through identification and integration of the roles and responsibilities of project participants on a single platform. BIM is a 3D model-based process which provides the insight into the efficient project planning and design. The 3D modeling can also be used significantly for the design of temporary structures in an earthwork project. This paper presents the quantity take-off methodology and parametric modeling technique for creating the temporary structures using 3D BIM process. A case study is conducted to implement the proposed temporary structure family design on a real site project. The study presented is beneficial for the earthwork project stakeholders to extract the relevant information using 3D BIM models in a project. It provides an opportunity to calculate the quantity of material required for a project accurately.

The Development of Urban Metro Maintenance Facility System Using Construction Classification System Management (공종분류체계를 활용한 도시철도 시설물 유지관리시스템 개발)

  • Hyun, Ji-Hun;Yang, Byong-Soo;Moon, Sung-Woo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.4
    • /
    • pp.69-77
    • /
    • 2012
  • The construction data should be controlled from the life-cycle perspective. The current PMIS (Project Management Information System) usually focuses on the construction operation stage. The PMIS does consider the utilization of the construction in the maintenance of constructed facilities. This paper tries to interface the construction data with the maintenance data for effective use of construction data in the life-cycle perspective. To achieve the research objective, a maintenance breakdown structure is established and connected to the work breakdown structures. The connection of the two breakdown structures provide a structured utilization of construction data for efficient maintenance work activities. A prototype suggests that the interface of maintenance and work breakdown structures can help provide a construction and maintenance data in a more efficient way for maintenance activities.

Development of Accident Cause Analysis Model for Construction Site (건설업 사고 발생원인 파악을 위한 사고 분석 모델 개발)

  • Lim, Won Jun;Kee, Jung Hun;Seong, Joo Hyun;Park, Jong Yil
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.1
    • /
    • pp.45-52
    • /
    • 2019
  • Accident analysis models were developed to improve the construction site safety and case studies was conducted. In 2016, 86% of fatality accidents occurred due to simple unsafe acts. Structure related accidents are less frequent than the non structure related causes, but the number of casualties per accident is two times higher than non structure one. In the view of risk perception, efforts should be given to reduce accidents caused by low frequency - high consequence structure related causes. In case of structure related accident, structural safety inspection and management (including quality), ground condition management / inspection technology, and provision of risk information delivery system in case of non structure related accident were proposed as a solution. In analysis of relationship between safety related stakeholder, the main problem were the lack of knowledge of controller and player, loss of control due to duplicated controls, lack of communication system of risk information, and relative position error of controller and player.

Development of Semantic Risk Breakdown Structure to Support Risk Identification for Bridge Projects

  • Isah, Muritala Adebayo;Jeon, Byung-Ju;Yang, Liu;Kim, Byung-Soo
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.245-252
    • /
    • 2022
  • Risk identification for bridge projects is a knowledge-based and labor-intensive task involving several procedures and stakeholders. Presently, risk information of bridge projects is unstructured and stored in different sources and formats, hindering knowledge sharing, reuse, and automation of the risk identification process. Consequently, there is a need to develop structured and formalized risk information for bridge projects to aid effective risk identification and automation of the risk management processes to ensure project success. This study proposes a semantic risk breakdown structure (SRBS) to support risk identification for bridge projects. SRBS is a searchable hierarchical risk breakdown structure (RBS) developed with python programming language based on a semantic modeling approach. The proposed SRBS for risk identification of bridge projects consists of a 4-level tree structure with 11 categories of risks and 116 potential risks associated with bridge projects. The contributions of this paper are threefold. Firstly, this study fills the gap in knowledge by presenting a formalized risk breakdown structure that could enhance the risk identification of bridge projects. Secondly, the proposed SRBS can assist in the creation of a risk database to support the automation of the risk identification process for bridge projects to reduce manual efforts. Lastly, the proposed SRBS can be used as a risk ontology that could aid the development of an artificial intelligence-based integrated risk management system for construction projects.

  • PDF

Front End Engineering and Design (FEED) for Project Management of Thermal Power Plant Construction

  • KIM, Namjoon;JUNG, Youngsoo
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.415-419
    • /
    • 2015
  • Engineering is a value-adding process applying knowledge and skills in the construction industry that includes the planning, feasibility study, project management (PM), front end engineering and design (FEED), detail design, procurement, construction, supervision, and operation. Among these engineering activities, FEED is defined as a comprehensive design practice in the early design phase focused on conceptual design and basic design. It is a particularly influencing area that determines the competitiveness of procurement and construction capability of construction firms (KNIN 2013). Nevertheless, previous studies in FEED have been limited to the design process, deliverable, or particular management technique (e.g. system engineering, collaboration, information etc.). In this context, the purpose of this study is to propose a comprehensive FEED business process structure for project management of thermal power plant construction projects encompassing the entire project life cycle. And an assessment methodology for FEED functions was developed. It is expected that the proposed structure of FEED functions and FEED evaluation methodology will contribute to improvement of competitive capability of engineering, procurement, and construction (EPC) companies.

  • PDF