• Title/Summary/Keyword: Construction condition (Ground Loss)

Search Result 22, Processing Time 0.02 seconds

Analysis of Response Change of Structure due to Tunnel Excavation Conditions in Sand Ground (모래지반에서 터널 굴착조건들을 반영한 상부 블록구조물의 거동변화 분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1541-1549
    • /
    • 2013
  • This study investigates the response of structures to tunnelling-induced ground movements in sand ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), ground condition (loose sand and dense sand). Four-story block-bearing structures have been used because the structueres can easily be characterized of the extent of dmages with crack size and distribution. Numerical parametric studies have been used to investigae of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and ground condition and provided as a relationship chart. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in sand ground.

Analysis of pile group behaviour to adjacent tunnelling considering ground reinforcement conditions with assessment of stability of superstructures

  • Young-Jin Jeon;Cheol-Ju Lee
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.463-475
    • /
    • 2023
  • Tunnel construction activity, conducted mainly in mountains and within urban centres, causes soil settlement, thus requiring the relevant management of slopes and structures as well as evaluations of risk and stability. Accordingly, in this study we performed a three-dimensional finite element analysis to examine the behaviour of piles and pile cap stability when a tunnel passes near the bottom of the foundation of a pile group connected by a pile cap. We examined the results via numerical analysis considering different conditions for reinforcement of the ground between the tunnel and the pile foundation. The numerical analysis assessed the angular distortion of the pile cap, pile settlement, axial force, shear stress, relative displacement, and volume loss due to tunnel excavation, and pile cap stability was evaluated based on Son and Cording's evaluation criterion for damage to adjacent structures. The pile located closest to the tunnel under the condition of no ground reinforcement exhibited pile head settlement approximately 70% greater than that of the pile located farthest from the tunnel under the condition of greatest ground reinforcement. Additionally, pile head settlement was greatest when the largest volume loss occurred, being approximately 18% greater than pile head settlement under the condition having the smallest volume loss. This paper closely examines the main factors influencing the behaviour of a pile group connected by a pile cap for three ground reinforcement conditions and presents an evaluation of pile cap stability.

Damage Analysis of Nearby Structures with the Consideration of Tunnel Construction Conditions in Sandy and Clayey Ground (모래 및 점토지반에서 터널시공조건을 고려한 인접구조물의 손상도 분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.53-63
    • /
    • 2011
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different ground (loose sand, dense sand, soft clay, stiff clay) and construction conditions (ground loss). The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different ground and construction conditions (ground loss) using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of ground and construction conditions (ground loss) considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of ground and construction conditions (ground loss) using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

Response Analysis of Frame Structures with the Consideration of Tunnel Construction (프레임구조물의 터널시공에 따른 거동분석)

  • Son, Moorak;Park, Jaehyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.3C
    • /
    • pp.121-127
    • /
    • 2012
  • This paper investigates the response of frame structures with the consideration of tunnel construction (ground loss) conditions. The response of four-story open frame structure and block-infilled frame structures, which are subjected to tunnelling-induced ground movements, has been investigated in different construction (ground loss) conditions using numerical analysis. The open frame structure has been modelled as an elastic structure, while the block-infilled frame structure has been modelled to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of the two different frame structures has been investigated in terms of construction (ground loss) conditions considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in the structures, has been provided in terms of construction (ground loss) conditions using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby frame structures due to tunnelling-induced ground movements.

Numerical analysis of tunnelling-induced ground movements (터널굴착으로 발생한 지반거동에 대한 수치해석적 분석)

  • Son, Moo-Rak;Yun, Jong-Cheol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.3
    • /
    • pp.229-242
    • /
    • 2009
  • Numerical analysis has been performed to estimate maximum settlement, maximum horizontal displacement and total settlement volume at the ground surface due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. In addition, the volume loss ($V_L$) at tunnel excavation face has been compared with the total surface settlement volume ($V_s$) with the variation of ground condition, tunnel depth, and tunnel diameter. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

Response Analysis of Nearby Structures with the Consideration of Tunnel Construction and Ground Conditions (터널시공 및 지반조건을 반영한 인접구조물의 거동분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.255-263
    • /
    • 2010
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different construction (ground loss) and soil characteristics. The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different construction (ground loss) and soil conditions using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of construction (ground loss) and soil conditions considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of construction (ground loss) and soil conditions using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

Response Analysis of Block-Bearing Structure due to Tunnel Excavation in Clay Ground (점토지반에서 터널굴착에 따른 상부 블록구조물의 거동분석)

  • Son, Moorak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.175-183
    • /
    • 2014
  • This study investigates the response of structures to tunnelling-induced ground movements in clay ground, varying tunnel excavation condition (tunnel depth and diameter), tunnel construction condition (ground loss), and tunnel ground condition (soft clay and stiff clay). Four-story block-bearing structures have been used because the structures can easily be characterized of the extent of damages with crack size and distribution. Numerical parametric studies have been used to investigate of the response of structures to varying tunnelling conditions. Numerical analysis has been conducted using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The results of structure responses from various parametric studies have been integrated to consider tunnel excavation condition, tunnel construction condition, and tunnel ground condition and provide a relationship chart among them. Using the chart, the response of structures to tunnelling can easily be evaluated in practice in clay ground.

A Study of the Anchorage loss of Ground Anchor Using Spacing Apparatus and Spring (간격유치장치를 이용한 어스앵커 인장에 관한 연구)

  • Jeong, Sang-Min;Park, Young-Keun;Park, Moo-Kon;Kim, Kwang-Eok;Lee, Keun-Ho
    • Journal of the Korea Institute of Building Construction
    • /
    • v.5 no.4 s.18
    • /
    • pp.139-144
    • /
    • 2005
  • A ground anchor system is used as a load carrying element in soil work. The conventional systems with ground anthers bring about the anchorage loss of wedges when anchors are installed for the support of soil structures. Hence we developed the new type of anchor system using both the spacing apparatus and spring (length 60mm, diameter 6mm). In this system, we tan directly check the condition of wedges and PS strands and modify the problems with the slip and anchorage of wedges under construction. For demonstrating the superiority of this system, we carried out a series of the laboratory test. Consequently, we can obtain satisfactory result (18.99$\%$ reduction to the loss of conventional systems). Moreover, the replacement of wedges is easy and simple when retensioning of strands.

Numerical Analysis of Tunnelling-Induced Ground Movements (터널굴착으로 발생한 지반거동에 대한 수치해석적 분석)

  • Son, Moo-Rak;Yun, Jong-Cheol
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.396-403
    • /
    • 2009
  • Numerical analysis has been performed to estimate maximum settlement and maximum horizontal displacement due to tunnel excavation varying ground condition, tunnel depth and diameter, and construction condition (volume loss at excavation face). The maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering ground condition, tunnel depth and diameter, and construction condition, and it has been also compared with the maximum horizontal displacement. The results from the numerical analysis have been compared with field measurements to confirm the applicability and validity of the results and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the ground movements due to tunnel excavation.

  • PDF

Comparison of Ground Movements in A Single Ground Layer and Multiple Ground Layers due to Nearby Tunnel Excavation (터널굴착으로 발생한 주변 단일지층 및 복합지층 지반에서의 지반변위에 대한 거동비교)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3C
    • /
    • pp.167-174
    • /
    • 2010
  • In this study, numerical analysis has been performed to compare the ground movements in a single ground layer and multiple ground layers due to nearby tunnel excavation. The numerical analysis has been conducted in the different ground layer conditions considering different construction conditions (volume loss at excavation face), and the results of the maximum surface settlement and horizontal displacement have been compared considering the ground layer and construction conditions. In addition, the maximum surface settlement from the numerical analysis has been compared with the maximum settlement at tunnel crown considering the ground layer and construction conditions, and the maximum surface settlement has been also compared with the maximum horizontal displacement with the ground layer conditions. Besides, the volume loss($V_L$) at tunnel excavation face has been compared with the total surface settlement volume($V_s$) with the variation of ground layer condition. The results from the numerical analysis have been compared with field measurements and by this comparison it is believed that the numerical results in this study can be utilized practically in analyzing the nearby ground behavior in different ground layer and construction conditions due to tunnel excavation.