• Title/Summary/Keyword: Construction Site Information Management

Search Result 423, Processing Time 0.02 seconds

Predicting Regional Soybean Yield using Crop Growth Simulation Model (작물 생육 모델을 이용한 지역단위 콩 수량 예측)

  • Ban, Ho-Young;Choi, Doug-Hwan;Ahn, Joong-Bae;Lee, Byun-Woo
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_2
    • /
    • pp.699-708
    • /
    • 2017
  • The present study was to develop an approach for predicting soybean yield using a crop growth simulation model at the regional level where the detailed and site-specific information on cultivation management practices is not easily accessible for model input. CROPGRO-Soybean model included in Decision Support System for Agrotechnology Transfer (DSSAT) was employed for this study, and Illinois which is a major soybean production region of USA was selected as a study region. As a first step to predict soybean yield of Illinois using CROPGRO-Soybean model, genetic coefficients representative for each soybean maturity group (MG I~VI) were estimated through sowing date experiments using domestic and foreign cultivars with diverse maturity in Seoul National University Farm ($37.27^{\circ}N$, $126.99^{\circ}E$) for two years. The model using the representative genetic coefficients simulated the developmental stages of cultivars within each maturity group fairly well. Soybean yields for the grids of $10km{\times}10km$ in Illinois state were simulated from 2,000 to 2,011 with weather data under 18 simulation conditions including the combinations of three maturity groups, three seeding dates and two irrigation regimes. Planting dates and maturity groups were assigned differently to the three sub-regions divided longitudinally. The yearly state yields that were estimated by averaging all the grid yields simulated under non-irrigated and fully-Irrigated conditions showed a big difference from the statistical yields and did not explain the annual trend of yield increase due to the improved cultivation technologies. Using the grain yield data of 9 agricultural districts in Illinois observed and estimated from the simulated grid yield under 18 simulation conditions, a multiple regression model was constructed to estimate soybean yield at agricultural district level. In this model a year variable was also added to reflect the yearly yield trend. This model explained the yearly and district yield variation fairly well with a determination coefficients of $R^2=0.61$ (n = 108). Yearly state yields which were calculated by weighting the model-estimated yearly average agricultural district yield by the cultivation area of each agricultural district showed very close correspondence ($R^2=0.80$) to the yearly statistical state yields. Furthermore, the model predicted state yield fairly well in 2012 in which data were not used for the model construction and severe yield reduction was recorded due to drought.

A Comparative Study of Juvenile Black-faced Spoonbills Platalea Minor Home Range in Gujido and Chilsando Islets, South Korea (구지도, 칠산도 저어새 유조의 행동권 비교 연구)

  • Son, Seok-Jun;Kang, Jung-Hoon;Kwon, In-Ki;Kim, Dal-Ho;Lee, Ki-Sup;Yoo, Jeong-Chil
    • Korean Journal of Environment and Ecology
    • /
    • v.34 no.2
    • /
    • pp.99-105
    • /
    • 2020
  • Migratory birds use a variety of breeding and wintering sites, and it is particularly important to understand more information on breeding and feeding sites for the conservation and management of endangered species. Black-faced spoonbills (Platalea minor) are an international endangered species distributed in East Asia. The majority of black-faced spoonbills breed on uninhabited islets off the west coast of the Korean Peninsula during the breeding season, and they are distributed in East Asia such as Taiwan, Hong Kong, southern China, Japan, and Jeju island during the winter season. In this study, we used a wild animal location tracking system to analyze and compare home ranges of three black-faced spoonbills spending the post-fledging stage in Gujido islet in Incheon and Chilsando islet in Yeonggwang each in 2015. The tree black-faced spoonbills in Guji islet showed a home range in coastal areas in Hwanghaenam-do and Gangneung-gun. The home range size (mean±SD) was estimated to be 425.49±116.95 ㎢ using 100% MCP, 43.61±18.51 ㎢ using KDE 95%, and 7.46±3.68 ㎢using KDE 50%. The tree black-faced spoonbills in Chilsando islet showed a home range in the Baeksu tidal flat and the Buan Saemangeum area with a size of 99.38±55.29 ㎢ using 100% MCP, 19.87±6.05 ㎢ using KDE 95%, and 1.16±0.53 ㎢ using KDE 50%. The figured indicated that the tree black-faced spoonbills breeding in Gujido islet had a wider home range than those breeding in Chilsando islet. During the post-fledging stage, the home ranges of black-faced spoonbills were mostly breeding in mudflats. Therefore, it is necessary to minimize human intervention, such as the construction of roads and structures and the human access, to protect the habitats during the period.

Evaluation of Hydrogeological Characteristic of Natural Barrier in Korea for Establishing Safety Guidelines of Deep Geological High-Level Radioactive Waste Disposal Site (고준위방사성폐기물 심층처분 부지 수리 지질 안전 규제를 위한 국내 지질환경 수리 특성 평가)

  • Suwan So;Jiho Jeong;Jaesung Park;Hyeongmok Lee;Subi Lee;Sujin Kim;Sinda Mbarki;Jina Jeong
    • Economic and Environmental Geology
    • /
    • v.57 no.4
    • /
    • pp.397-416
    • /
    • 2024
  • This study assessed the hydrogeological properties of the deep geological environment to develop safety criteria for the natural barriers used in the deep geological disposal of high-level radioactive waste in Korea. The assessment focused on the distribution and trends of hydraulic conductivity and permeability properties appropriate for the domestic geological environment, using various in-situ hydraulic test data collected for groundwater development and management. To develop a depth-hydrogeological property relationship model suitable for domestic conditions, the study reviewed various international research examples and applied a representative model that explains the trends of hydraulic conductivity and permeability with depth. The development of the model suitable for Korea involved applying ensemble regression analysis to account for the uncertainty of various factors in the collected data. The results confirmed that existing international depth-hydrogeological property relationship models adequately describe the characteristics of the domestic geological environment. Considering the preferred hydrogeological criteria suggested by countries like Sweden, Germany, and Canada, there is a high likelihood that a suitable geological environment exists in Korea. Additionally, the application of hydrogeological criteria indicative of low-permeability environments showed that suitable conditions for disposal construction increase at depths greater than 300 m, where the influence of fractures on groundwater flow might be minimal at depths exceeding 500 m. This research can serve as foundational information for establishing hydrogeological safety standards for natural barriers in Korea according to international regulatory guidelines.