• 제목/요약/키워드: Construction Facilities

Search Result 2,751, Processing Time 0.032 seconds

A Study on the Safety Grounding for Prevention of Electric Shock Hazard in Construction of Industrial Plant in Maritime Landfill Area (해상 매립 지역 산업 플랜트 건설 시 감전 재해 예방을 위한 안전 접지에 관한 연구)

  • Kim, Hong-Yong;Jang, Ung-Burm
    • Journal of the Society of Disaster Information
    • /
    • v.13 no.3
    • /
    • pp.305-312
    • /
    • 2017
  • In our society, the advanced, advanced, and information industries have continued to grow and now live in the era of the fourth industrial revolution. As the industry develops, the load of the users has also increased so much that it is deepened by the energy shortage phenomenon and the construction of additional energy facilities is required. Therefore, energy plant construction work is being actively carried out in the coastal area. In particular, it is common to build a plant in the ground by filling the coast with soil in other regions, reflecting the fact that Korea is lacking in the country when constructing power plants, gas and petrochemical plants. Current domestic grounding designs are designed or constructed to suit only the use of grounding resistors based on the electrical equipment design technical standards. However, in the case of a plant facility constructed in the untested buried soil, when the lightning current and the abnormal current are inputted, the facility operator or the user due to the elevation of the ground potential is seriously exposed to the risk of electric shock disaster. In this paper, we analyze the ground resistivity of the landfilled soil and use a computer program (CDEGS) based on KS C IEC 61936-1, We analyze the contact voltage and stratification voltage and propose a grounding design optimized for plant installation.

Extraction of Road Structure Elements for Developing IFC(Industry Foundation Classes) Model for Road (도로분야 IFC 확장을 위한 도로시설의 구성요소 도출)

  • Moon, Hyoun-Seok;Choi, Won-Sik;Kang, Leen-Seok;Nah, Hei-Sook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1195-1203
    • /
    • 2014
  • Since IFC (Industry Foundation Classes) 4 is based on the representation of 3D elements for an architecture project, and does not define standardized shapes for civil projects such as roads, bridges, and tunnels etc, it has limitations in securing interoperability for exchanging a shape information model for the civil projects. Besides, since road facilities have a linear reference, which is modeled along the center alignment, it is difficult the designers to create a standardized 3D road model. The aim of this study is to configure structure elements and their attribute for a road in the perspective of 3D design for developing a shape information model for the road. To solve these issues, this study analyzes the design documents, which consist of a road design handbook, guide, specifications and standards, and then extract shape elements and their attributes of road structures. Such shape elements are defined as an entity item and we review a hierarchical structure of a road shape defined by a virtual road model. The detailed elements and their attributes can be utilized as a 3D shape information model for constructing BIM (Building Information Modeling) environment for Infrastructures. Besides, it is expected that the suggested items will be utilized as a base data for extending to IFC for a road subdividing the detailed shapes, types and attributes for road projects.

Evaluation of Effective Dose and Exposure Levels of Radon in Office and Plant Buildings (일부 제조업 사업장의 사무 및 공장동에서의 라돈농도 수준 및 유효선량 평가)

  • Chung, Eun Kyo;Kim, Ki Woong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.27 no.1
    • /
    • pp.38-45
    • /
    • 2017
  • Objectives: Radon may be second only to smoking as a cause of lung cancer. Radon is a colorless, tasteless radioactive gas that is formed via the radioactive decay of radium. Therefore, radon levels can build up based on the amount of radium contained in construction materials such as phospho-gypsum board or when ventilation rates are low. This study provides our findings from evaluation of radon gas at facilities and offices in an industrial complex. Methods: We evaluated the office rooms and processes of 12 manufacturing factories from May 14, 2014 to September 23, 2014. Short-term data were measured by using real-time monitoring detectors(Model 1030, Sun Nuclear Co., USA) indoors in the office buildings. The radon measurements were recorded at 30-minute intervals over approximately 48 hours. The limit of detection of this instrument is $3.7Bq/m^3$. Also, long-term data were measured by using ${\alpha}-track$ radon detectors(${\alpha}-track$, Rn-tech Co., Korea) in the office and factory buildings. Our detectors were exposed for over 90 days, resulting in a minimum detectable concentration of $7.4Bq/m^3$. Detectors were placed 150-220 cm above the floor. Results: Radon concentrations averaged $20.6{\pm}17.0Bq/m^3$($3.7-115.8Bq/m^3$) in the overall area. The monthly mean concentration of radon by building materials were in the order of gypsum>concrete>cement. Radon concentrations were measured using ${\alpha}-track$ in parallel with direct-reading radon detectors and the two metric methods for radon monitoring were compared. A t-test for the two sampling methods showed that there is no difference between the average radon concentrations(p<0.05). Most of the office buildings did not have central air-conditioning, but several rooms had window- or ceiling-mounted units. Employees could also open windows. The first, second and third floors were used mainly for office work. Conclusions: Radon levels measured during this assessment in the office rooms of buildings and processes in factories were well below the ICRP reference level of $1,000Bq/m^3$ for workplaces and also below the lower USEPA residential guideline of $148Bq/m^3$. The range of indoor annual effective dose due to radon exposure for workers working in the office and factory buildings was 0.01 to 1.45 mSv/yr. Construction materials such as phospho-gypsum board, concrete and cement were the main emission sources for workers' exposure.

A study on structural performance of steel brackets in vertical shaft connected to double-deck tunnel (복층터널 연결 수직구용 철재브래킷 구조성능 연구)

  • Shin, Young-Wan;Min, Byeong-Heon;Nam, Jung-Bong;Lee, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.363-375
    • /
    • 2019
  • Since the double-deck tunnel is deeply constructed in the city, it is necessary to secure the installation space of air supply and exhaust, escape passage stairs, elevator, distribution facilities and connection tunnels in the vertical shaft for the double-deck tunnel. Also, in order to minimize the effect of construction on adjacent area, it is necessary to construct the concrete structures at high speed in vertical shaft after tunnel excavation. Therefore, the slabs and the stairs in vertical shaft are needed to be constructed using precast concrete, and the rapid construction techniques of bracket for supporting the inner precast structure are needed. The bracket installation methods include cast-in-place concrete, precast concrete and steel. In this study, the improvement of the steel brackets with good economical efficiency and good workability was carried out in consideration of the improvement of the construction speed. We have developed a new bracket that is optimized through bracket shape improvement, anchor bolt position adjustment and quantity optimization. As a result of the structural performance test, it was confirmed that the required load supporting capacity was secured. As a result of structural performance test for bar type anchor bolt and bent anchor anchor bolt, it was confirmed that the required load carrying capacity was secured and that the load bearing capacity of bent anchor bolt was large.

Analysis on Handicaps of Automated Vehicle and Their Causes using IPA and FGI (IPA 및 FGI 분석을 통한 자율주행차량 핸디캡과 발생원인 분석)

  • Jeon, Hyeonmyeong;Kim, Jisoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.3
    • /
    • pp.34-46
    • /
    • 2021
  • In order to accelerate the commercialization of self-driving cars, it is necessary to accurately identify the causes of deteriorating the driving safety of the current self-driving cars and try to improve them. This study conducted a questionnaire survey of experts studying autonomous driving in Korea to identify the causes of problems in the driving safety of autonomous vehicles and the level of autonomous driving technology in Korea. As a result of the survey, the construction section, heavy rain/heavy snow conditions, fine dust conditions, and the presence of potholes were less satisfied with the current technology level than their importance, and thus priority research and development was required. Among them, the failure of road/road facilities and the performance of the sensor itself in the construction section and the porthole, and the performance of the sensor and the absence of an algorithm were the most responsible for the situation connected to the weather. In order to realize safe autonomous driving as soon as possible, it is necessary to continuously identify and resolve the causes that hinder the driving safety of autonomous vehicles.

A Study on the Development of Feasibility Evaluation Model for Establishment of Public Libraries (공공도서관 설립 사전 타당성 평가모형 개발 연구)

  • Sin-Young, Kim;Hee-Yoon, Yoon
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.56 no.4
    • /
    • pp.101-127
    • /
    • 2022
  • Article 31(1) of the Libraries Act(Act No. 18547), which was completely revised on December 7, 2021, stipulates that "the head of a local government or the superintendent of a city/provincial office of education must formulate a plan for the establishment and operation of a public library in advance and obtain the pre-evaluation of the feasibility of establishing a public library from the Minister of Culture, Sports and Tourism." Through the preliminary feasibility evaluation at the construction stage of the public library, it is possible to adjust distribution to improve the adequacy of scale and resolve regional imbalances and gaps. In addition, it is expected to increase service satisfaction and operational enhancement by inducing faithful securing of core infrastructure (librarians, collection, facilities, systems, etc.) in terms of balanced regional development and public library construction. The purpose of this study is to develop and present the basic direction and feasibility evaluation model for establishment of public libraries. The proposed evaluation model is expected to secure the legal basis and institutional legitimacy of the pre-evaluation system for public library establishment and to prevent waste of tax due to poor construction and operation of public libraries.

A Study on the Activation of Green Remodeling to Achieve Carbon Neutrality - Focusing on a case of Gwangmyeong City - (탄소중립 목표 달성을 위한 그린리모델링 활성화 방안에 관한 연구 - 광명시 사례를 중심으로 -)

  • Kim, Gi-Ran;Lee, Ju-hyun;Kim, Kyong Ju;Kim, Kyoungmin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.12-21
    • /
    • 2023
  • Green remodeling proposed in the Korean New Deal is a project to build or remodel eco-friendly and energy-efficient buildings using renewable energy facilities and high-performance insulation for public buildings. The government intends to achieve the carbon emission reduction target by conducting green remodeling. Major overseas cities that conduct green remodeling are actively promoting technology support and promotion along with energy performance evaluation according to building characteristics, subsidies for private revitalization, and tax benefits. With this background, the analysis of the current status and problems of the green remodeling project was performed and the Activation factors of Green Remodeling were derived from survey results. This study suggested strategic measures such as a participation of civil society, promotion, and priority selection of administration and policy measures such as a leading role of the public sector, expanding support for the socially underprivileged, and financial support and tax benefits. And this study results are expected to be utilized as basic data to promote the green remodeling project.

Development and Utilization of Linked Data of Port Maintenance Information for Port Facilities Based on Port BIM Standards (항만 BIM 표준 기반 항만 유지관리 정보의 링크드데이터 구축 및 활용)

  • Shin, Jaeyoung;Moon, Hyounseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.501-510
    • /
    • 2023
  • The importance of using construction data is increasing in accordance with the recent trend in the smart construction. However, construction project and maintenance information is distributed on the web, and the existing BIM(Building Information Modeling) information exchange and linking method using IFC(Industry Foundation Classes) cannot support connection with BIM data and web resources. This study aims to establish the BIM-based port facility data integration system using linked data(LD) technology in order to integrate BIM and heterogeneous data in the port maintenance domain. To this end, the port BIM-based ifcOWL and port facility maintenance ontology were designed, and LD was built for the BIM and maintenance information of Busan New Port 2-1 Pier3, a BIM pilot project. In addition, service prototypes such as search, statistics and SPARQL(SPARQL Protocol and RDF Query Language) endpoint functions were implemented using the issued LD. The LD-based information utilization system is expected to improve the reusability of information by converting the existing closed information system into an open system and BIM and maintenance data as a web resource in a standard format.

Tunnel Design/Construction Risk Assessment base on GIS-ANN (GIS-ANN 기반의 도심지 터널 설계/시공 위험도 평가)

  • Yoo, Chung Sik;Kim, Joo Mi;Kim, Sun Bin;Jung, Hye Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1C
    • /
    • pp.63-72
    • /
    • 2006
  • Due to rapid development of many cities in Korea, many public facilities are required to be built as well as complementary civil structures. Consequently, a number of tunnel constructions are currently carried out throughout the country, and many more tunnels are planned to be constructed in the near future. Tunnel excavation in a city often causes serious damage to above-ground structures and sewer system because of unexpected settlement. In order to prevent the destruction, the tunnel, which bypasses the center of a city, must be specially evaluated for its influence to other structure. In addition, since a slight disturbance of above-ground structure causes numerous public complaints and civil appeals, it must be approached with different method than the mountain tunnels. In this paper, the evaluation method using the Artificial Neural Network (ANN) has been studied. The method begins with an analysis of the minimal sectional area. If its result can be used to approximate the general influence of the whole section, the actual evaluation using ANN will take off. In addition, it also studies the construction management method which reflects the real time soil behavior and environment influence during construction using Geographic Information System (GIS).

Fabrication Technique and Structural Performance Verification of PSC U-Type Segment Girder Using On-Site Pretension Method (현장 프리텐션 긴장 방식 적용 PSC U형 분절 거더 제작 기술 및 구조 성능 검증)

  • Sangki Park;Jaehwan Kim;Dong-Woo Seo;Ki-Tae Park;Hyun-Ock Jang
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.3
    • /
    • pp.17-26
    • /
    • 2023
  • Prestressed Concrete (PSC) girders are divided into pre- and post-tension types as prestressing method, and I- and U-type as cross-sectional shape. There are both advantages and disadvantages depending on each prestressing method and cross-sectional shape, and each method is applied to bridge construction sites. In this study, a new girder design was attempted to develop that overcomes its shortcomings by using the pretension method and U-type cross sectional shape. Its structural performance was verified in this study. Pretension type girders are mainly manufactured in factories because they require a reaction arm and related facilities, and have the disadvantage of being limited in weight and span length for road transportation. In addition, in the case of the U-type cross-section, structural stability is very reliable during construction against overturning, but its own weight is relatively large comparing to I-type, and the post-tension method is mainly applied after on-site production. In this study, a PSC girder manufacturing method using the field pretension was proposed and a span length of 40 m real-scale test specimen was manufactured and verified its structural performance.