• Title/Summary/Keyword: Construction Estimation

Search Result 2,083, Processing Time 0.029 seconds

Multi-objective Genetic Algorism Model for Determining an Optimal Capital Structure of Privately-Financed Infrastructure Projects (민간투자사업의 최적 자본구조 결정을 위한 다목적 유전자 알고리즘 모델에 관한 연구)

  • Yun, Sungmin;Han, Seung Heon;Kim, Du Yon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1D
    • /
    • pp.107-117
    • /
    • 2008
  • Private financing is playing an increasing role in public infrastructure construction projects worldwide. However, private investors/operators are exposed to the financial risk of low profitability due to the inaccurate estimation of facility demand, operation income, maintenance costs, etc. From the operator's perspective, a sound and thorough financial feasibility study is required to establish the appropriate capital structure of a project. Operators tend to reduce the equity amount to minimize the level of risk exposure, while creditors persist to raise it, in an attempt to secure a sufficient level of financial involvement from the operators. Therefore, it is important for creditors and operators to reach an agreement for a balanced capital structure that synthetically considers both profitability and repayment capacity. This paper presents an optimal capital structure model for successful private infrastructure investment. This model finds the optimized point where the profitability is balanced with the repayment capacity, with the use of the concept of utility function and multi-objective GA (Generic Algorithm)-based optimization. A case study is presented to show the validity of the model and its verification. The research conclusions provide a proper capital structure for privately-financed infrastructure projects through a proposed multi-objective model.

A Study on the Indirect Benefits of Undergrounding Overhead Power Line Projects in an Urban Area Using Contingent Valuation Method (조건부가치측정법(CVM)을 이용한 도심지 송전선로 지중화사업의 간접편익 추정)

  • Park, Chan-Ho;Kim, Sung-Keun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.871-879
    • /
    • 2008
  • Recently, as there are a rise in the standard of living and higher concerns of an electromagnetic wave and environment, undergrounding the aerial cables which are supported by large pylons and generally considered as the least attractive feature of an urban area is on an increasing trend to improve aesthetic benefits and electric reliability. This study applied Contingent Valuation Method (CVM) which is expected to become an effective tool to measure indirect benefit to estimate the substantial benefits of undergrounding overhead power line projects in an urban area. The tunneling construction project of the 345kV Shinsungnam electric power cable in Seongnam city was selected and a hypothetical scenario was given to respondents to determine their levels of Willingness to Pay (WTP) for undergrounding overhead power lines. The result from the estimation of the WTP of undergrounding overhead power lines in Seongnam city was calculated as approximately 17.1 billion won. Placing existing overhead lines underground is difficult to justify economically. Most undergrounding costs appear to be justified by aesthetic and public policy considerations. Therefore, considering the result of this study, undergrounding overhead power lines is of great benefit to public.

Application of Self-Organizing Map Theory for the Development of Rainfall-Runoff Prediction Model (강우-유출 예측모형 개발을 위한 자기조직화 이론의 적용)

  • Park, Sung Chun;Jin, Young Hoon;Kim, Yong Gu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4B
    • /
    • pp.389-398
    • /
    • 2006
  • The present study compositely applied the self-organizing map (SOM), which is a kind of artificial neural networks (ANNs), and the back propagation algorithm (BPA) for the rainfall-runoff prediction model taking account of the irregular variation of the spatiotemporal distribution of rainfall. To solve the problems from the previous studies on ANNs, such as the overestimation of low flow during the dry season, the underestimation of runoff during the flood season and the persistence phenomenon, in which the predicted values continuously represent the preceding runoffs, we introduced SOM theory for the preprocessing in the prediction model. The theory is known that it has the pattern classification ability. The method proposed in the present research initially includes the classification of the rainfall-runoff relationship using SOM and the construction of the respective models according to the classification by SOM. The individually constructed models used the data corresponding to the respectively classified patterns for the runoff prediction. Consequently, the method proposed in the present study resulted in the better prediction ability of runoff than that of the past research using the usual application of ANNs and, in addition, there were no such problems of the under/over-estimation of runoff and the persistence.

An Estimation on the Applicability of Hollow FRP Soil Nailing System (중공식 FRP쏘일네일링 시스템의 적용성 평가)

  • Lee, Hyuk-Jin;Koh, Hyung-Seon;Han, Yong-Hee;Kim, Hong-Taek
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6C
    • /
    • pp.385-393
    • /
    • 2006
  • Soil nailing is a reinforcement method used for stabilizing excavated walls or slopes. Due to its much advantages such as ease of construction and economical efficiency, use of soil nailing is increased. However, the soil nail has much disadvantages for use in urban area. The soil nail needs to be installed inevitably beyond private land boundary, which causes rent for use. For this reason, removable soil nailing system was developed. However, the removal rate of this system is just about 50¢¦70%. To resolve this problem, the Fiber Reinforced Plastic (FRP) soil nailing system which does not need to be removed and allows for the installation beyond private land, is developed. In this paper, through theoretical and experimental studies in laboratory and field such as prototype tests, pullout tests, we evaluate the stability and behavior characteristics of the FRP soil nailing system. And, numerical analyses using FLAC2D were performed with respect to various soil conditions, where prototype test for excavation wall and pullout tests were carried out. As a result of this study, the FRP soil nailing systems show similar behavior characteristics with those of removable soil nailing system. Finally, considering the serviceability and mechanical stability of FRP soil nailing systems, it is enough to be used as a good alternative of general soil nailing system.

Prediction and Determination of Correction Coefficients for Blast Vibration Based on AI (AI 기반의 발파진동 계수 예측 및 보정계수 산정에 관한 연구)

  • Kwang-Ho You;Myung-Kyu Song;Hyun-Koo Lee;Nam-Jung Kim
    • Explosives and Blasting
    • /
    • v.41 no.3
    • /
    • pp.26-37
    • /
    • 2023
  • In order to determine the amount of explosives that can minimize the vibration generated during tunnel construction using the blasting method, it is necessary to derive the blasting vibration coefficients, K and n, by analyzing the vibration records of trial blasting in the field or under similar conditions. In this study, we aimed to develop a technique that can derive reasonable K and n when trial blasting cannot be performed. To this end, we collected full-scale trial blast data and studied how to predict the blast vibration coefficient (K, n) according to the type of explosive, center cut blasting method, rock origin and type, and rock grade using deep learning (DL). In addition, the correction value between full-scale and borehole trial blasting results was calculated to compensate for the limitations of the borehole trial blasting results and to carry out a design that aligns more closely with reality. In this study, when comparing the available explosive amount according to the borehole trial blasting result equation, the predictions from deep learning (DL) exceed 50%, and the result with the correction value is similar to other blast vibration estimation equations or about 20% more, enabling more economical design.

A Study on Atmospheric Turbulence-Induced Errors in Vision Sensor based Structural Displacement Measurement (대기외란시 비전센서를 활용한 구조물 동적 변위 측정 성능에 관한 연구)

  • Junho Gong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.3
    • /
    • pp.1-9
    • /
    • 2024
  • This study proposes a multi-scale template matching technique with image pyramids (TMI) to measure structural dynamic displacement using a vision sensor under atmospheric turbulence conditions and evaluates its displacement measurement performance. To evaluate displacement measurement performance according to distance, the three-story shear structure was designed, and an FHD camera was prepared to measure structural response. The initial measurement distance was set at 10m, and increased with an increment of 10m up to 40m. The atmospheric disturbance was generated using a heating plate under indoor illuminance condition, and the image was distorted by the optical turbulence. Through preliminary experiments, the feasibility of displacement measurement of the feature point-based displacement measurement method and the proposed method during atmospheric disturbances were compared and verified, and the verification results showed a low measurement error rate of the proposed method. As a result of evaluating displacement measurement performance in an atmospheric disturbance environment, there was no significant difference in displacement measurement performance for TMI using an artificial target depending on the presence or absence of atmospheric disturbance. However, when natural targets were used, RMSE increased significantly at shooting distances of 20 m or more, showing the operating limitations of the proposed technique. This indicates that the resolution of the natural target decreases as the shooting distance increases, and image distortion due to atmospheric disturbance causes errors in template image estimation, resulting in a high displacement measurement error.

Genetic diversity and population structure in five Inner Mongolia cashmere goat populations using whole-genome genotyping

  • Tao Zhang;Zhiying Wang;Yaming Li;Bohan Zhou;Yifan Liu;Jinquan Li;Ruijun Wang;Qi Lv;Chun Li;Yanjun Zhang;Rui Su
    • Animal Bioscience
    • /
    • v.37 no.7
    • /
    • pp.1168-1176
    • /
    • 2024
  • Objective: As a charismatic species, cashmere goats have rich genetic resources. In the Inner Mongolia Autonomous Region, there are three cashmere goat varieties named and approved by the state. These goats are renowned for their high cashmere production and superior cashmere quality. Therefore, it is vitally important to protect their genetic resources as they will serve as breeding material for developing new varieties in the future. Methods: Three breeds including Inner Mongolia cashmere goats (IMCG), Hanshan White cashmere goats (HS), and Ujimqin white cashmere goats (WZMQ) were studied. IMCG were of three types: Aerbas (AEBS), Erlangshan (ELS), and Alashan (ALS). Nine DNA samples were collected for each population, and they were genomically re-sequenced to obtain high-depth data. The genetic diversity parameters of each population were estimated to determine selection intensity. Principal component analysis, phylogenetic tree construction and genetic differentiation parameter estimation were performed to determine genetic relationships among populations. Results: Samples from the 45 individuals from the five goat populations were sequenced, and 30,601,671 raw single nucleotide polymorphisms (SNPs) obtained. Then, variant calling was conducted using the reference genome, and 17,214,526 SNPs were retained after quality control. Individual sequencing depth of individuals ranged from 21.13× to 46.18×, with an average of 28.5×. In the AEBS, locus polymorphism (79.28) and expected heterozygosity (0.2554) proportions were the lowest, and the homologous consistency ratio (0.1021) and average inbreeding coefficient (0.1348) were the highest, indicating that this population had strong selection intensity. Conversely, ALS and WZMQ selection intensity was relatively low. Genetic distance between HS and the other four populations was relatively high, and genetic exchange existed among the other four populations. Conclusion: The Inner Mongolia cashmere goat (AEBS type) population has a relatively high selection intensity and a low genetic diversity. The IMCG (ALS type) and WZMQ populations had relatively low selection intensity and high genetic diversity. The genetic distance between HS and the other four populations was relatively high, with a moderate degree of differentiation. Overall, these genetic variations provide a solid foundation for resource identification of Inner Mongolia Autonomous Region cashmere goats in the future.

Analysis of Parameter Optimization Reflecting the Characteristics of Runoff in Small Mountain Catchment (소규모 산지 유역의 유출특성을 반영한 매개변수 최적화 분석)

  • Joungsung Lim;Hojin Lee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.9
    • /
    • pp.5-14
    • /
    • 2024
  • In Korea, torrential rain frequency and intensity have surged over the past five years (2019-2023), breaking rainfall records. Due to insufficient observation facilities for rainfall and runoff data in small mountainous catchments, preparing for unexpected floods is challenging. This study examines the Bidogyo catchment in Goesan-gun, Chungcheongbuk-do, comparing design flood discharge calculated with optimized parameters versus standard guidelines. Using HEC-HMS and Q-GIS for model construction, five rainfall events were analyzed with data from the National Water Resources Management Information System. The time of concentration (Tc) and storage constant (K) were calculated using the Seokyeongdae formula and model optimization. Results showed that optimized parameters produced higher objective function values for flood events. The design flood discharge varied by -10.7% to 17.3% from the standard guidelines when using optimized parameters. Moreover, optimized parameters yielded flood discharges closer to observed values, highlighting limitations of the Seokyeongdae formula for all catchments. Further research aims to develop suitable parameter estimation methods for small mountainous catchments in Korea.

Comparing Prediction Uncertainty Analysis Techniques of SWAT Simulated Streamflow Applied to Chungju Dam Watershed (충주댐 유역의 유출량에 대한 SWAT 모형의 예측 불확실성 분석 기법 비교)

  • Joh, Hyung-Kyung;Park, Jong-Yoon;Jang, Cheol-Hee;Kim, Seong-Joon
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.9
    • /
    • pp.861-874
    • /
    • 2012
  • To fulfill applicability of Soil and Water Assessment Tool (SWAT) model, it is important that this model passes through a careful calibration and uncertainty analysis. In recent years, many researchers have come up with various uncertainty analysis techniques for SWAT model. To determine the differences and similarities of typical techniques, we applied three uncertainty analysis procedures to Chungju Dam watershed (6,581.1 $km^2$) of South Korea included in SWAT-Calibration Uncertainty Program (SWAT-CUP): Sequential Uncertainty FItting algorithm ver.2 (SUFI2), Generalized Likelihood Uncertainty Estimation (GLUE), Parameter Solution (ParaSol). As a result, there was no significant difference in the objective function values between SUFI2 and GLUE algorithms. However, ParaSol algorithm shows the worst objective functions, and considerable divergence was also showed in 95PPU bands with each other. The p-factor and r-factor appeared from 0.02 to 0.79 and 0.03 to 0.52 differences in streamflow respectively. In general, the ParaSol algorithm showed the lowest p-factor and r-factor, SUFI2 algorithm was the highest in the p-factor and r-factor. Therefore, in the SWAT model calibration and uncertainty analysis of the automatic methods, we suggest the calibration methods considering p-factor and r-factor. The p-factor means the percentage of observations covered by 95PPU (95 Percent Prediction Uncertainty) band, and r-factor is the average thickness of the 95PPU band.

Empirical Estimation and Diurnal Patterns of Surface PM2.5 Concentration in Seoul Using GOCI AOD (GOCI AOD를 이용한 서울 지역 지상 PM2.5 농도의 경험적 추정 및 일 변동성 분석)

  • Kim, Sang-Min;Yoon, Jongmin;Moon, Kyung-Jung;Kim, Deok-Rae;Koo, Ja-Ho;Choi, Myungje;Kim, Kwang Nyun;Lee, Yun Gon
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.3
    • /
    • pp.451-463
    • /
    • 2018
  • The empirical/statistical models to estimate the ground Particulate Matter ($PM_{2.5}$) concentration from Geostationary Ocean Color Imager (GOCI) Aerosol Optical Depth (AOD) product were developed and analyzed for the period of 2015 in Seoul, South Korea. In the model construction of AOD-$PM_{2.5}$, two vertical correction methods using the planetary boundary layer height and the vertical ratio of aerosol, and humidity correction method using the hygroscopic growth factor were applied to respective models. The vertical correction for AOD and humidity correction for $PM_{2.5}$ concentration played an important role in improving accuracy of overall estimation. The multiple linear regression (MLR) models with additional meteorological factors (wind speed, visibility, and air temperature) affecting AOD and $PM_{2.5}$ relationships were constructed for the whole year and each season. As a result, determination coefficients of MLR models were significantly increased, compared to those of empirical models. In this study, we analyzed the seasonal, monthly and diurnal characteristics of AOD-$PM_{2.5}$model. when the MLR model is seasonally constructed, underestimation tendency in high $PM_{2.5}$ cases for the whole year were improved. The monthly and diurnal patterns of observed $PM_{2.5}$ and estimated $PM_{2.5}$ were similar. The results of this study, which estimates surface $PM_{2.5}$ concentration using geostationary satellite AOD, are expected to be applicable to the future GK-2A and GK-2B.