• Title/Summary/Keyword: Construction Equipment Detection

Search Result 82, Processing Time 0.033 seconds

Anomaly Detection via Pattern Dictionary Method and Atypicality in Application (패턴사전과 비정형성을 통한 이상치 탐지방법 적용)

  • Sehong Oh;Jongsung Park;Youngsam Yoon
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.481-486
    • /
    • 2023
  • Anomaly detection holds paramount significance across diverse fields, encompassing fraud detection, risk mitigation, and sensor evaluation tests. Its pertinence extends notably to the military, particularly within the Warrior Platform, a comprehensive combat equipment system with wearable sensors. Hence, we propose a data-compression-based anomaly detection approach tailored to unlabeled time series and sequence data. This method entailed the construction of two distinctive features, typicality and atypicality, to discern anomalies effectively. The typicality of a test sequence was determined by evaluating the compression efficacy achieved through the pattern dictionary. This dictionary was established based on the frequency of all patterns identified in a training sequence generated for each sensor within Warrior Platform. The resulting typicality served as an anomaly score, facilitating the identification of anomalous data using a predetermined threshold. To improve the performance of the pattern dictionary method, we leveraged atypicality to discern sequences that could undergo compression independently without relying on the pattern dictionary. Consequently, our refined approach integrated both typicality and atypicality, augmenting the effectiveness of the pattern dictionary method. Our proposed method exhibited heightened capability in detecting a spectrum of unpredictable anomalies, fortifying the stability of wearable sensors prevalent in military equipment, including the Army TIGER 4.0 system.

Development of Core Technology for Object Detection in Excavation Work Using Laser Sensor (레이저 센서를 이용한 굴삭기 작업의 장애물 탐지 요소기술 개발)

  • Soh, Ji-Yune;Kim, Min-Woong;Lee, Jun-Bok;Han, Choong-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.8 no.4
    • /
    • pp.71-77
    • /
    • 2008
  • Earthwork is very equipment-intensive task and researches related to automated excavation have been conducted. There is an issue to secure the safety for an automated excavating system. Therefore, this paper focuses on how to improve safety for semi- or fully-automated backhoe excavation. The primary objective of this research is to develop the core technology for automated object detection in excavation work. In order to satisfy the research objective, a diverse sensing technologies are investigated and analysed in terms of functions, durability, and reliability. The authors developed detecting algorithm for the objects using laser sensor and verified its performance by several tests. The results of this study would be the basis for developing the automated object detection system.

Development of Digital Fault Detection Systems for Screening Open and Short of Wire Harness (와이어 하네스 단선 단락 선별을 위한 디지털 고장 검출 시스템 개발)

  • A Ran Kim;Jae Wan Park;Ha Seon Kim;Jae Hoon Jeong;Sun Young Kim
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.140-149
    • /
    • 2023
  • Wire harness is a component for efficient control when electronic parts are required such as construction machinery and electric vehicles. With emerging issues such as autonomous driving and automation in construction, a wire harness composed of multiple cables has become an essential part because more electronic parts are required. However, when a wire harness failure occurs, systems can be stopped, accidents can occur, and economic damage can be significant. Therefore, in this paper, we developed a digital fault screening system that could easily and quickly diagnose faults in the wire harness. The principle of the developed system was to sequentially send pulse signals to the wire harness and use returned signals to perform fault detection. As a result of diagnosing faults using the developed failure detection system, a detection accuracy of 99.9 % was confirmed through the experiments.

A Study on the Dataset Construction and Model Application for Detecting Surgical Gauze in C-Arm Imaging Using Artificial Intelligence (인공지능을 활용한 C-Arm에서 수술용 거즈 검출을 위한 데이터셋 구축 및 검출모델 적용에 관한 연구)

  • Kim, Jin Yeop;Hwang, Ho Seong;Lee, Joo Byung;Choi, Yong Jin;Lee, Kang Seok;Kim, Ho Chul
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.290-297
    • /
    • 2022
  • During surgery, Surgical instruments are often left behind due to accidents. Most of these are surgical gauze, so radioactive non-permeable gauze (X-ray gauze) is used for preventing of accidents which gauze is left in the body. This gauze is divided into wire and pad type. If it is confirmed that the gauze remains in the body, gauze must be detected by radiologist's reading by imaging using a mobile X-ray device. But most of operating rooms are not equipped with a mobile X-ray device, but equipped C-Arm equipment, which is of poorer quality than mobile X-ray equipment and furthermore it takes time to read them. In this study, Use C-Arm equipment to acquire gauze image for detection and Build dataset using artificial intelligence and select a detection model to Assist with the relatively low image quality and the reading of radiology specialists. mAP@50 and detection time are used as indicators for performance evaluation. The result is that two-class gauze detection dataset is more accurate and YOLOv5 model mAP@50 is 93.4% and detection time is 11.7 ms.

Damage Detection and Damage Quantification of Temporary works Equipment based on Explainable Artificial Intelligence (XAI)

  • Cheolhee Lee;Taehoe Koo;Namwook Park;Nakhoon Lim
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.11-19
    • /
    • 2024
  • This paper was studied abouta technology for detecting damage to temporary works equipment used in construction sites with explainable artificial intelligence (XAI). Temporary works equipment is mostly composed of steel or aluminum, and it is reused several times due to the characters of the materials in temporary works equipment. However, it sometimes causes accidents at construction sites by using low or decreased quality of temporary works equipment because the regulation and restriction of reuse in them is not strict. Currently, safety rules such as related government laws, standards, and regulations for quality control of temporary works equipment have not been established. Additionally, the inspection results were often different according to the inspector's level of training. To overcome these limitations, a method based with AI and image processing technology was developed. In addition, it was devised by applying explainableartificial intelligence (XAI) technology so that the inspector makes more exact decision with resultsin damage detect with image analysis by the XAI which is a developed AI model for analysis of temporary works equipment. In the experiments, temporary works equipment was photographed with a 4k-quality camera, and the learned artificial intelligence model was trained with 610 labelingdata, and the accuracy was tested by analyzing the image recording data of temporary works equipment. As a result, the accuracy of damage detect by the XAI was 95.0% for the training dataset, 92.0% for the validation dataset, and 90.0% for the test dataset. This was shown aboutthe reliability of the performance of the developed artificial intelligence. It was verified for usability of explainable artificial intelligence to detect damage in temporary works equipment by the experiments. However, to improve the level of commercial software, the XAI need to be trained more by real data set and the ability to detect damage has to be kept or increased when the real data set is applied.

Construction of Database for Deep Learning-based Occlusion Area Detection in the Virtual Environment (가상 환경에서의 딥러닝 기반 폐색영역 검출을 위한 데이터베이스 구축)

  • Kim, Kyeong Su;Lee, Jae In;Gwak, Seok Woo;Kang, Won Yul;Shin, Dae Young;Hwang, Sung Ho
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.9-15
    • /
    • 2022
  • This paper proposes a method for constructing and verifying datasets used in deep learning technology, to prevent safety accidents in automated construction machinery or autonomous vehicles. Although open datasets for developing image recognition technologies are challenging to meet requirements desired by users, this study proposes the interface of virtual simulators to facilitate the creation of training datasets desired by users. The pixel-level training image dataset was verified by creating scenarios, including various road types and objects in a virtual environment. Detecting an object from an image may interfere with the accurate path determination due to occlusion areas covered by another object. Thus, we construct a database, for developing an occlusion area detection algorithm in a virtual environment. Additionally, we present the possibility of its use as a deep learning dataset to calculate a grid map, that enables path search considering occlusion areas. Custom datasets are built using the RDBMS system.

A Study on a Structure of Obstacle Detection System of AGV for Port Automation (항만 자동화를 위한 AGV 시스템의 장애물 감지 시스템의 구성에 관한 연구)

  • 박찬훈;최성락;박경택;김선호
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.227-234
    • /
    • 2000
  • AGV is very proper equipment for Port Automation. AGV must have Obstacle Detection System(ODS) for port automation. Obstacle Detection System must have some functions. It must be able to classify some specified object from background data. And it must be able to track classified objects. Finally, ODS must determine its next action for safe cruise whether it must do emergency stop or it must speed down or it must change its track. For these functions, ODS can have many different structures. In this paper, we will propose one structure among some possible ones. Our ODS has been being developed using proposed structure since last year. In this paper, we will introduce our system which is under construction.

  • PDF

REAL-TIME 3D MODELING FOR ACCELERATED AND SAFER CONSTRUCTION USING EMERGING TECHNOLOGY

  • Jochen Teizer;Changwan Kim;Frederic Bosche;Carlos H. Caldas;Carl T. Haas
    • International conference on construction engineering and project management
    • /
    • 2005.10a
    • /
    • pp.539-543
    • /
    • 2005
  • The research presented in this paper enables real-time 3D modeling to help make construction processes ultimately faster, more predictable and safer. Initial research efforts used an emerging sensor technology and proved its usefulness in the acquisition of range information for the detection and efficient representation of static and moving objects. Based on the time-of-flight principle, the sensor acquires range and intensity information of each image pixel within the entire sensor's field-of-view in real-time with frequencies of up to 30 Hz. However, real-time working range data processing algorithms need to be developed to rapidly process range information into meaningful 3D computer models. This research ultimately focuses on the application of safer heavy equipment operation. The paper compares (a) a previous research effort in convex hull modeling using sparse range point clouds from a single laser beam range finder, to (b) high-frame rate update Flash LADAR (Laser Detection and Ranging) scanning for complete scene modeling. The presented research will demonstrate if the FlashLADAR technology can play an important role in real-time modeling of infrastructure assets in the near future.

  • PDF

Computer Vision-based Continuous Large-scale Site Monitoring System through Edge Computing and Small-Object Detection

  • Kim, Yeonjoo;Kim, Siyeon;Hwang, Sungjoo;Hong, Seok Hwan
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.1243-1244
    • /
    • 2022
  • In recent years, the growing interest in off-site construction has led to factories scaling up their manufacturing and production processes in the construction sector. Consequently, continuous large-scale site monitoring in low-variability environments, such as prefabricated components production plants (precast concrete production), has gained increasing importance. Although many studies on computer vision-based site monitoring have been conducted, challenges for deploying this technology for large-scale field applications still remain. One of the issues is collecting and transmitting vast amounts of video data. Continuous site monitoring systems are based on real-time video data collection and analysis, which requires excessive computational resources and network traffic. In addition, it is difficult to integrate various object information with different sizes and scales into a single scene. Various sizes and types of objects (e.g., workers, heavy equipment, and materials) exist in a plant production environment, and these objects should be detected simultaneously for effective site monitoring. However, with the existing object detection algorithms, it is difficult to simultaneously detect objects with significant differences in size because collecting and training massive amounts of object image data with various scales is necessary. This study thus developed a large-scale site monitoring system using edge computing and a small-object detection system to solve these problems. Edge computing is a distributed information technology architecture wherein the image or video data is processed near the originating source, not on a centralized server or cloud. By inferring information from the AI computing module equipped with CCTVs and communicating only the processed information with the server, it is possible to reduce excessive network traffic. Small-object detection is an innovative method to detect different-sized objects by cropping the raw image and setting the appropriate number of rows and columns for image splitting based on the target object size. This enables the detection of small objects from cropped and magnified images. The detected small objects can then be expressed in the original image. In the inference process, this study used the YOLO-v5 algorithm, known for its fast processing speed and widely used for real-time object detection. This method could effectively detect large and even small objects that were difficult to detect with the existing object detection algorithms. When the large-scale site monitoring system was tested, it performed well in detecting small objects, such as workers in a large-scale view of construction sites, which were inaccurately detected by the existing algorithms. Our next goal is to incorporate various safety monitoring and risk analysis algorithms into this system, such as collision risk estimation, based on the time-to-collision concept, enabling the optimization of safety routes by accumulating workers' paths and inferring the risky areas based on workers' trajectory patterns. Through such developments, this continuous large-scale site monitoring system can guide a construction plant's safety management system more effectively.

  • PDF

Condition Monitoring System Construction for Electrical Equipments of Metropolitan Rapid Transit (도시철도 전력설비 상태감시 시스템 구성)

  • Park, Hyun-Soo;Choi, Gwang-Bum;Uh, Soo-Young;Ryu, Ki-Seon;Im, Hyeong-Gil;Jung, Ho-Sung;Park, Young;Ko, Sung-Bum
    • Proceedings of the KSR Conference
    • /
    • 2009.05a
    • /
    • pp.447-451
    • /
    • 2009
  • Metropolitan rapid transit has been used by one of a main transport service for several decades, but there are no monitoring system for electrical equipment condition which can cause enormous economic loss and social problem if fault occurs. Recently, necessity of condition monitoring system for electrical equipment fault came to the fore, we became carrying out a research project for a design of electrical equipment lifetime estimation system for metropolitan rapid transit. In this paper, basic design result of condition monitoring system and specification of transformer partial discharge detection system are presented, which are part of entire lifetime estimation system. Definition of target apparatus and monitoring method determined by analysis of user requirement from each railway company and, each railway company's opinions and requests were collected sufficiently by surveys and discussion.

  • PDF