• Title/Summary/Keyword: Construction Duration Reduction

Search Result 68, Processing Time 0.023 seconds

Performance of aerated lightweighted concrete using aluminum lathe and pumice under elevated temperature

  • Mohammad Alharthai;Yasin Onuralp Ozkilic;Memduh Karalar;Md Azree Othuman Mydin;Nebi Ozdoner;Ali Ihsan Celik
    • Steel and Composite Structures
    • /
    • v.51 no.3
    • /
    • pp.271-288
    • /
    • 2024
  • The primary objective of this study is to investigate the production and performance characteristics of structural concrete incorporating varying proportions (0%, 25%, and 50% by volume) of pumice stone, as well as aluminum lathe as an additive at 0%, 1%, 2%, and 3%, under fire conditions. The experiment will be conducted over a period of up to 1 hour, at temperatures ranging from 24℃, 200℃, 400℃ and 600℃. For the purpose of this, a total of twelve test samples were manufactured, and then tests of compressive strength (CS), splitting tensile strength (STS), and flexural strength (FS) were performed on these samples.Next, a comparison was made between the obtained values and the influence of temperature. To achieve this objective, the manufactured samples were placed at temperatures of 200℃, 400℃, and 600℃ for a duration of 1 hour, and were subjected to the influence of temperature.These values at 24 ℃ were then contrasted with the CS results obtained from test samples that were subjected to the temperature effect for an hour at 200 ℃, 400 ℃, and 600 ℃. A comprehensive analysis of the test outcomes reveals that the incorporation of aluminum lathe wastes into a mixture results in a significant reduction in the compressive strength of the concrete. As a result of this adjustment, the CS values dropped by 32.93%, 45.70%, and 52.07%, respectively. Furthermore, It was shown that testing the ratios of pumice stone alone resulted in a decrease in CS outcomes. Additionally, it was found that the presence of higher temperatures is clearly the primary factor contributing to the decrease in the strength of concrete. Due to elevated temperatures, the CS values decreased by 19.88%, 28.27%, and 38.61% respectively.After this investigation, an equation that explains the connection between CS and STS was provided through the utilization of the data of the experiments that were carried out.

Operation Scheduling in a Commercial Building with Chiller System and Energy Storage System for a Demand Response Market (냉각 시스템 및 에너지 저장 시스템을 갖춘 상업용 빌딩의 수요자원 거래시장 대응을 위한 운영 스케줄링)

  • Son, Joon-Ho;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.8
    • /
    • pp.312-321
    • /
    • 2018
  • The Korean DR market proposes suppression of peak demand under reliability crisis caused a natural disaster or unexpected power plant accidents as well as saving power plant construction costs and expanding amount of reserve as utility's perspective. End-user is notified a DR event signal DR execution before one hour, and executes DR based on requested amount of load reduction. This paper proposes a DR energy management algorithm that can be scheduled the optimal operations of chiller system and ESS in the next day considering the TOU tariff and DR scheme. In this DR algorithm is divided into two scheduling's; day-ahead operation scheduling with temperature forecasting error and operation rescheduling on DR operation. In day-ahead operation scheduling, the operations of DR resources are scheduled based on the finite number of ambient temperature scenarios, which have been generated based on the historical ambient temperature data. As well as, the uncertainties in DR event including requested amount of load reduction and specified DR duration are also considered as scenarios. Also, operation rescheduling on DR operation day is proposed to ensure thermal comfort and the benefit of a COB owner. The proposed method minimizes the expected energy cost by a mixed integer linear programming (MILP).

Evaluation of Flexural Performance of Eco-Friendly Alkali-Activated Slag Fiber Reinforced Concrete Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 알카리활성 슬래그 섬유보강콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Yi, Dong-Ryul;Ha, Jae-Hoon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.170-178
    • /
    • 2015
  • In this study, it was developed eco-friendly alkali-activated slag fiber reinforced concrete using ground granulated blast furnace slag, alkali activator (water glass, sodium hydroxides), and steel fiber. Eight reinforced concrete beam using alkali-activated slag concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, mixed/without of steel fiber. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The reinforced concrete beams using the eco-friendly alkali-activated slag fiber reinforced concrete was failed by the flexure or flexure-shear in general. In addition, the maximum strength increased with the adding the mol of sodium hydroxide, and the specimen reinforced the steel fiber showed the value of maximum strength which is increased by 15.8% through 25.9%. It is thought that eco-friendly alkali-activated slag fiber reinforced concrete can be used with construction material and product to replace normal concrete. If there is applied to structures such as precast concrete member and production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Influencing Factors Analysis for the Number of Participants in Public Contracts Using Big Data (빅데이터를 활용한 공공계약의 입찰참가자수 영향요인 분석)

  • Choi, Tae-Hong;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.3 no.2
    • /
    • pp.87-99
    • /
    • 2018
  • This study analyze the factors affecting the number of bidders in public contracts by collecting contract data such as purchase of goods, service and facility construction through KONEPS among various forms of public contracts. The reason why the number of bidders is important in public contracts is that it can be a minimum criterion for judging whether to enter into a rational contract through fair competition and is closely related to the budget reduction of the ordering organization or the profitability of the bidders. The purpose of this study is to analyze the factors that determine the participation of bidders in public contracts and to present the problems and policy implications of bidders' participation in public contracts. This research distinguishes the existing sampling based research by analyzing and analyzing many contracts such as purchasing, service and facility construction of 4.35 million items in which 50,000 public institutions have been placed as national markets and 300,000 individual companies and corporations participated. As a research model, the number of announcement days, budget amount, contract method and winning bid is used as independent variables and the number of bidders is used as a dependent variable. Big data and multidimensional analysis techniques are used for survey analysis. The conclusions are as follows: First, the larger the budget amount of public works projects, the smaller the number of participants. Second, in the contract method, restricted competition has more participants than general competition. Third, the duration of bidding notice did not significantly affect the number of bidders. Fourth, in the winning bid method, the qualification examination bidding system has more bidders than the lowest bidding system.

A Change of Peak Outflows due to Decision of Flow Path in Storm Sewer Network (우수관망 노선 결정에 따른 첨두유출량 변화 분석)

  • Lee, Jung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.5151-5156
    • /
    • 2010
  • In the previous researches for storm sewer design, the flow paths in overall network were determined to minimize the construction cost and then, it was not considered the superposition effect of runoff hydrographs in the sewer pipes. However, in this research, the flow paths are determined considering the superposition effect to reduce the inundation risk by controlling and distributing the flows in the sewer pipes. This is accomplished by distributing the inflows that enter into each junction by changing the flow path in which pipes are connected between junctions. In this paper, the superposition effect and peak outflows at outlet were analyzed considering the changes of the flow paths in the sewer network. Then, the flow paths are determined using genetic algorithm and the objective function is to minimize the peak outflow at outlet. As the applied result for the sample sewer network, the difference between maximum and minimum peak outflows which are caused by the change of flow path was about 5.6% for the design rainfall event of 10 years frequency with 30 min. duration. Also, the typhoon 'Rusa' which occurred at 2002 was applied to verify the reduction of inundation risk for the excessive rainfall, and then, the amount of overflows was reduced to about 31%.

Construction of an Exposure Matrix Using a Risk Assessment of Industries and Processes Involving Dichloromethane (작업환경측정 자료를 활용한 Dichloromethane 노출 매트릭스 구축에 대한 연구)

  • Lee, Jae-Hwan;Park, Dong-Uk;Hong, Sung-Chul;Ha, Kwon-Chul
    • Journal of Environmental Health Sciences
    • /
    • v.36 no.5
    • /
    • pp.391-401
    • /
    • 2010
  • A reduction in risk of occupational exposure to chemical hazards within the workplace has been the focus of attention both through industry initiatives and legislation. The aims of this study were to develop an exposure matrix by industry and process, and to apply this matrix to control the risk of occupational exposure to Dichloromethane (DCM). The exposure matrix is a tool to convert information on industry and process into information on occupational risk. The exposure matrix comprised industries and processes involving DCM, based on an exposure database provided by KOSHA (the Korean Occupational Safety and Health Agency), which was gathered from a workplace hazards evaluation program in Korea. The risk assessment of the exposure matrix was performed using Hallmark risk assessment tool. The results of the risk assessment were indicated by a Danger Value (DV) calculated from the combination of hazard rating (HR), duration of use rating (DUR), and risk probability rating (RPR) of exposure to the chemical, and were divided into four control bands which were related to control measures. The applicability of the risk assessment of the exposure matrix was evaluated by a field study, and survey of the employees of the exposure matrix groups. Among 45 industries examined, this study found that greater attention should be paid to two industries: the manufacture of other optical instruments and photographic equipment, and the manufacture of printing ink, and to one process among 47 examined, the packing process in the manufacture of printing ink, because these were regarded as carrying the highest risk. This tool of a risk assessment for the exposure matrix can be applied as a general exposure information system for hazard control, risk quantification, setting the occupational exposure limit, and hazard surveillance. The exposure matrix includes workforce data, and it provides information on the numbers of exposed workers in Korea by agent, occupation, and level of exposure and risk.

A Study on the Leakage Protection with Polypropylene Mat in Irrigation Canal (Polypropylene Mat에 의(依)한 용수로(用水路)의 누수방지(漏水防止)에 관(關)한 연구(硏究))

  • Kang, Sin-Up;Kang, Yea-Mook;Cho, Seung-Seup
    • Korean Journal of Agricultural Science
    • /
    • v.6 no.2
    • /
    • pp.166-184
    • /
    • 1979
  • In order to prevent the water loss in the irrigation canal constructed on the sandy gravel layer or on the other highly permeable ground layer, lining has been practiced. Many studies have been done so far on the lining method to prevent the water loss in the irrigation canal and recently studies on the lining with plastic film or polyethylene film were also reported. However, the plastic film or polyethylene film has low strength and is liable to break, and water loss from pin hole caused by contacting with sand or gravel is highly predicted. This study was then conducted to find proper lining and buring method in canal construction of polypropylene mat after coated with vinyl, as one way to overcome the shortcoming frequently observed when plastic or usual polyehtylene film were used. Eventhough rather longer periods of experiments are needed to attain reliable and accurate results on the variation of durability, the durability of asphalt coated area, or on the damage due to freeze after burial or exposure of polypropylene mat, the experiemental results obtained during one year of period are summarized as follows: 1. The curvature at the area between canal bottom and side slope had increased stability and saved consruction cost. The relationship among the variation of curvature, the reduction of polypropylene mat and the reduced amount of soil cutting at each side slope was presented in Fig. 7 through 9. 2. The depth of covering material to protect polypropylene mat was desired to be over 30cm, considering the water depth, side slope, canal cleaning practices, traffic, or back pressure of irrigation period. 3. In order to increase the canal stability and to prevent slope erosion, sandy soil was required, to be placed under ground, and coarse gravel should cover the surface area of canal. 4. The studies on the stability of side slope in the canal should consider the passive area on the bottom and the slope should be about 1 to 2, considering the slope stability, allowable velocity and tractive force. 5. When compared with earth lining, the lining with polypropylene mat coated with vinyl was responsible to save 28% and 37% of canal lining cost, when the soil carrying distances were 500 and 700m. respectively. 6. The water interception was almost completely attained when the polypropylene mat coated with vinyl was used for lining. But further studies were assumed to be necessary for the use of asphalt since the strength of polypropylene mat connected with asphalt will vary with duration.

  • PDF