• Title/Summary/Keyword: Construction Cost Prediction Model

Search Result 104, Processing Time 0.025 seconds

The Life Expectancy Making Model for Construction Equipment (건설장비 수명결정 모델)

  • Lee, Yongsu;Kim, Cheol Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5D
    • /
    • pp.453-461
    • /
    • 2012
  • Life analysis is conducted for economic analysis of equipment or facilities. The purpose of life analysis is to predict future indicators for scrapping construction equipment, and establish and utilize a wide variety of business strategies according to data predictions. First, this study shows the methods to figure out average life, life expectancy and life prediction of construction equipment and the analysis of life making methods, using survival curves. Second, the study proposes and examines the life expectancy making model depending on revenues and expenses. The result of the study reveals that the economic life of the same equipment varies with expenses, revenues and the initial cost. The life expectancy making model for construction equipment reflects respective management status for equipment and will help efficient management for companies.

A Study on the Optimum Design Flowrate for Tunnel-Type Small Hydro Power Plants

  • Lee, Chul-Hyung;Park, Wan-Soon
    • Korean Journal of Hydrosciences
    • /
    • v.3
    • /
    • pp.81-96
    • /
    • 1992
  • This study represents the methodology for feasibility analysis of small hydro power SHP plant. Cumulative density function of Weibull distribution and Thiessen method were adopted to decide flow duration curve at SHP candidate site. The perfomance prediction model and construction cost estimation model for tunnel-type SHP plant were developed. Eight tunnel -type SHP candidate sites existing on Han-river were selected and surveyed for actual site reconnaissance. The performance characteristics and economical feasibility for these sites were analyzed by using developed models. As a result, it was found that the optimum design flowrate with the lowest unit generation cost for tunel-type SHP candidate site were the flowrate concerming with between 20% and 30% of time ratio on the flow duration curve. Additionally, primary design specifications such as design flowrate, effective head, capacity, annual averageload factor, annual electricity production were estimated and discussed for eight surveyed SHP candidate sites.

  • PDF

Shield TBM disc cutter replacement and wear rate prediction using machine learning techniques

  • Kim, Yunhee;Hong, Jiyeon;Shin, Jaewoo;Kim, Bumjoo
    • Geomechanics and Engineering
    • /
    • v.29 no.3
    • /
    • pp.249-258
    • /
    • 2022
  • A disc cutter is an excavation tool on a tunnel boring machine (TBM) cutterhead; it crushes and cuts rock mass while the machine excavates using the cutterhead's rotational movement. Disc cutter wear occurs naturally. Thus, along with the management of downtime and excavation efficiency, abrasioned disc cutters need to be replaced at the proper time; otherwise, the construction period could be delayed and the cost could increase. The most common prediction models for TBM performance and for the disc cutter lifetime have been proposed by the Colorado School of Mines and Norwegian University of Science and Technology. However, design parameters of existing models do not well correspond to the field values when a TBM encounters complex and difficult ground conditions in the field. Thus, this study proposes a series of machine learning models to predict the disc cutter lifetime of a shield TBM using the excavation (machine) data during operation which is response to the rock mass. This study utilizes five different machine learning techniques: four types of classification models (i.e., K-Nearest Neighbors (KNN), Support Vector Machine, Decision Tree, and Staking Ensemble Model) and one artificial neural network (ANN) model. The KNN model was found to be the best model among the four classification models, affording the highest recall of 81%. The ANN model also predicted the wear rate of disc cutters reasonably well.

Case study of design and construction for cutter change in EPB TBM tunneling (EPB 쉴드 TBM 커터 교체 설계 및 시공 사례 분석)

  • Lee, Jae-won;Kang, Sung-wook;Jung, Jae-hoon;Kang, Han-byul;Shin, Young Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.6
    • /
    • pp.553-581
    • /
    • 2022
  • Shortly after tunnel boring machine (TBM) was introduced in the tunneling industry, the use of TBM has surprisingly increased worldwide due to its performance together with the benefit of being safely and environmentally friendly. One of the main cost items in the TBM tunneling in rock and soil is changing damaged or worn cutters. It is because that the cutter change is a time-consuming and costly activity that can significantly reduce the TBM utilization and advance rate and has a major effect on the total time and cost of TBM tunneling projects. Therefore, the importance of accurately evaluating the cutter life can never be overemphasized. However, the prediction of cutter wear in soil, rock including mixed face is very complex and not yet fully clarified, subsequently keeping engineers busy around the world. Various prediction models for cutter wear have been developed and introduced, but these models almost usually produce highly variable results due to inherent uncertainties in the models. In this study, a case study of design and construction of disc cutter change is introduced and analyzed, rather than proposing a prediction model of cutter wear. As the disc cutter is strongly affected by the geological condition, TBM machine characteristic and operation, authors believe it is very hard to suggest a generalized prediction model given the uncertainties and limitations therefore it would be more practical to analyze a real case and provide a detailed discussion of the difference between prediction and result for the cutter change. By doing so, up-to-date idea about planning and execution of cutter change in practice can be promoted.

Finite element analysis of a CFRP reinforced retaining wall

  • Ouria, Ahad;Toufigh, Vahab;Desai, Chandrakant;Toufigh, Vahid;Saadatmanesh, Hamid
    • Geomechanics and Engineering
    • /
    • v.10 no.6
    • /
    • pp.757-774
    • /
    • 2016
  • Soils are usually weak in tension therefore different materials such as geosynthetics are used to address this inadequacy. Worldwide annual consumption of geosynthetics is close to $1000million\;m^2$, and the value of these materials is probably close to US$1500 million. Since the total cost of the construction is at least four or five times the cost of the geosynthetic itself, the impact of these materials on civil engineering construction is very large indeed. Nevertheless, there are several significant problems associated with geosynthetics, such as creep, low modulus of elasticity, and susceptibility to aggressive environment. Carbon fiber reinforced polymer (CFRP) was introduced over two decades ago in the field of structural engineering that can also be used in geotechnical engineering. CFRP has all the benefits associated with geosynthetics and it boasts higher strength, higher modulus, no significant creep and reliability in aggressive environments. In this paper, the performance of a CFRP reinforced retaining wall is investigated using the finite element method. Since the characterization of behavior of soils and interfaces are vital for reliable prediction from the numerical model, soil and interface properties are obtained from comprehensive laboratory tests. Based on the laboratory results for CFRP, backfill soil, and interface data, the finite element model is used to study the behavior of a CFRP reinforced wall. The finite element model was verified based on the results of filed measurements for a reference wall. Then the reference wall simulated by CFRP reinforcements and the results. The results of this investigations showed that the safety factor of CFRP reinforced wall is more and its deformations is less than those for a retaining wall reinforced with ordinary geosynthetics while their construction costs are in similar range.

A Study on the development of big data-based AI water meter freeze and burst risk information service (빅데이터 기반 인공지능 동파위험 정보서비스 개발을 위한 연구)

  • Lee, Jinuk;Kim, Sunghoon;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.3
    • /
    • pp.42-51
    • /
    • 2023
  • Freeze and burst water meter in winter causes many social costs, such as meter replacement cost, inability of water use, and secondary damage by freezing water. The government is making efforts to modernize local waterworks, and in particular, is promoting SWM(Smart Water Management) project nationwide. In this study suggests a new freeze risk notification information service based on the temperature by IoT sensor inside the water meter box rather than outside temperature. In addition, in order to overcome the quantitative and regional limitation of IoT temperature sensors installed nationwide, and AI based temperature prediction model was developed that predicts the temperature inside water meter boxes based on data acquired from IoT temperature sensors and other information. Through the prediction model optimization process, a nationwide water meter freezing risk information service was convinced.

Development of Deep Learning Based Deterioration Prediction Model for the Maintenance Planning of Highway Pavement (도로포장의 유지관리 계획 수립을 위한 딥러닝 기반 열화 예측 모델 개발)

  • Lee, Yongjun;Sun, Jongwan;Lee, Minjae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.20 no.6
    • /
    • pp.34-43
    • /
    • 2019
  • The maintenance cost for road pavement is gradually increasing due to the continuous increase in road extension as well as increase in the number of old routes that have passed the public period. As a result, there is a need for a method of minimizing costs through preventative grievance preventive maintenance requires the establishment of a strategic plan through accurate prediction of road pavement. Hence, In this study, the deep neural network(DNN) and the recurrent neural network(RNN) were used in order to develop the expressway pavement damage prediction model. A superior model among these two network models was then suggested by comparing and analyzing their performance. In order to solve the RNN's vanishing gradient problem, the LSTM (Long short-term memory) circuits which are a more complicated form of the RNN structure were used. The learning result showed that the RMSE value of the RNN-LSTM model was 0.102 which was lower than the RMSE value of the DNN model, indicating that the performance of the RNN-LSTM model was superior. In addition, high accuracy of the RNN-LSTM model was verified through the comparison between the estimated average road pavement condition and the actually measured road pavement condition of the target section over time.

Study on the effective parameters and a prediction model of the shield TBM performance (쉴드 TBM 굴진 주요 영향인자분석 및 굴진율 예측모델 제시)

  • Jo, Seon-Ah;Kim, Kyoung-Yul;Ryu, Hee-Hwan;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.347-362
    • /
    • 2019
  • Underground excavation using TBM machines has been increasing to reduce complaints caused by noise, vibration, and traffic congestion resulted from the urban underground construction in Korea. However, TBM excavation design and construction still need improvement because those are based on standards of the technologically advanced countries (e.g., Japan, Germany) that do not consider geological environment in Korea at all. Above all, although TBM performance is a main factor determining the TBM machine type, duration and cost of the construction, it is estimated by only using UCS (uniaxial compressive strength) as the ground parameters and it often does not match the actual field conditions. This study was carried out as part of efforts to predict penetration rate suitable for Korean ground conditions. The effective parameters were defined through the correlation analysis between the penetration rate and the geotechnical parameters or TBM performance parameters. The effective parameters were then used as variables of the multiple regression analysis to derive a regression model for predicting TBM penetration rate. As a result, the regression model was estimated by UCS and joint spacing and showed a good agreement with field penetration rate measured during TBM excavation. However, when this model was applied to another site in Korea, the prediction accuracy was slightly reduced. Therefore, in order to overcome the limitation of the regression model, further studies are required to obtain a generalized prediction model which is not restricted by the field conditions.

Predicting Highway Concrete Pavement Damage using XGBoost (XGBoost를 활용한 고속도로 콘크리트 포장 파손 예측)

  • Lee, Yongjun;Sun, Jongwan
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.6
    • /
    • pp.46-55
    • /
    • 2020
  • The maintenance cost for highway pavement is gradually increasing due to the continuous increase in road extension as well as increase in the number of old routes that have passed the public period. As a result, there is a need for a method of minimizing costs through preventative grievance Preventive maintenance requires the establishment of a strategic plan through accurate prediction old Highway pavement. herefore, in this study, the XGBoost among machine learning classification-based models was used to develop a highway pavement damage prediction model. First, we solved the imbalanced data issue through data sampling, then developed a predictive model using the XGBoost. This predictive model was evaluated through performance indicators such as accuracy and F1 score. As a result, the over-sampling method showed the best performance result. On the other hand, the main variables affecting road damage were calculated in the order of the number of years of service, ESAL, and the number of days below the minimum temperature -2 degrees Celsius. If the performance of the prediction model is improved through more data accumulation and detailed data pre-processing in the future, it is expected that more accurate prediction of maintenance-required sections will be possible. In addition, it is expected to be used as important basic information for estimating the highway pavement maintenance budget in the future.

Development and implementation of statistical prediction procedure for field penetration index using ridge regression with best subset selection (최상부분집합이 고려된 능형회귀를 적용한 현장관입지수에 대한 통계적 예측기법 개발 및 적용)

  • Lee, Hang-Lo;Song, Ki-Il;Kim, Kyoung Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.857-870
    • /
    • 2017
  • The use of shield TBM is gradually increasing due to the urbanization of social infrastructures. Reliable estimation of advance rate is very important for accurate construction period and cost. For this purpose, it is required to develop the prediction model of advance rate that can consider the ground properties reasonably. Based on the database collected from field, statistical prediction procedure for field penetration index (FPI) was modularized in this study to calculate penetration rate of shield TBM. As output parameter, FPI was selected and various systems were included in this module such as, procedure of eliminating abnormal dataset, preprocessing of dataset and ridge regression with best subset selection. And it was finally validated by using field dataset.