• Title/Summary/Keyword: Construction Condition

Search Result 3,667, Processing Time 0.036 seconds

An Experimental Study on the Compressive Strength of High Strength Concrete According to Testing Condition (시험조건과 고강도콘크리트의 압축강도 관계에 관한 실험적 연구)

  • Chin, Young-Gil;Lee, Yong-Su;Kim, Kwang-Seo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.2
    • /
    • pp.129-134
    • /
    • 2002
  • The strength and durability of concrete are affected by various factors such as the quality of material, mixing ratio, construction, the method of cure, time elapsed. the condition of test and etc., it is very difficult to pre-estimate the strength of concrete with the use of experimental specimen. The domestic standard of specimen cylindrical type and its sizes are both l0cm$\times$20cm and 15cm$\times$30cm, which are prescribed in KS F2405, and the loading speed is prescribed to test with 2~3kgf/$\textrm{cm}^2$ per second. The loading speed should have great effect on the compressive strength, but in reality in the construction site sometimes the loading speed is applied so dubiously that the value of the compressive strength can be unreliable. And the cross sectional area of a specimen should be level and smooth, otherwise it can be broken at a lower stress than the real strength through the eccentric or intensive working of the load. Capping should be carried out in order to measure the strength correctly. And used for capping are various materials such as capping compound, cement glue, plaster, mechanical grinding and etc. In this study, therefore, I have carried out an experiment on the relationship among the loading speed, the ratio of height to diameter of specimen, the method of capping, and the compressive strength, for the efficient quality control of concrete structures. So this study has been purposed to provide some basic data that can be used effectively at construction sites.

A Study on the Proper Methodology for Clauses of Delay Claim in the Accounting Regulation to Prevent Delay Claims (국내 회계예규상의 공기지연 클레임 관련사항의 개선방안)

  • Kim Jae-Wook;Lee Hak-Ki
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.287-291
    • /
    • 2002
  • A construction claim is generally caused by several causes, and in the case of developed countries, the most fundamental problem in most claims is a delay claim. Also, it is predicted that the trouble will increase by this one in a domestic case as well. Even though the construction claims occurred by the delay claim are the most frequent ill construction project, it is very difficult to analyze due to the complexity of occurring forms. Therefore, the rational judgement and the solving method need to be concerned through the accurate understanding the clauses accepted in a international contract execution and a domestic contrail when the claim occurred. The purpose of this study is to present problems and improving methods by comparing FIDIC with a domestic accounting regulation in order to expand a general condition into the international contract condition.

  • PDF

A Real Scale Experimental Study for Evaluation of Permissible Shear Stresses on Vegetation Mats (식생매트 허용 소류력 평가를 위한 실규모 실험 연구)

  • Lee, Du Han;Kim, Dong-Hee;Kim, Myounghwan;Rhee, Dong Sop
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.12
    • /
    • pp.6151-6158
    • /
    • 2012
  • By the activation of environment-friendly river works, application of vegetation mats is increasing, however, evaluation techniques for hydraulic stability of vegetation mats are not presented. This study is conducted to develop the objective test method for vegetation mats. Two kind of vegetation mats are tested by the real scale experiments, and hydraulic quantities are measured and analyzed to evaluate acting shear stresses. Roughness and shear stress are evaluated by 1 D non-uniform model. After each tests, changes in mat surfaces and sub-soil are evaluated, and from these evaluation, 3 types of mat surface damages and 2 types of sub-soil damages are presented. In the study, the case in which some damages in mat surface don't cause loss of sub-soil, is presented to be in the stable condition. Appling this stable condition and acting shear stresses, permissible shear stresses of vegetation mats are evaluated, and the results show that the reinforced mat with wire netting has more permissible shear stress.

Geotechnical Characteristics of Cut Slope in Tertiary Jungja Bain, Ulsan area (울산지역 제3기 정자분지의 도로사면 지반특성)

  • Kim, Seung-Hyun;Koo, Ho-Bon;Lee, Jung-Yup;Rhee, Jong-Hyun;Park, Sung-Kyu;Kim, Kwan-Young
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.107-112
    • /
    • 2005
  • Road is built continuously along with development of industry and cut slope is happened necessarily in road construction. Geoengineers are executing cut slope stability analysis considering various cut slope condition such as topography, geology, hydraulic condition and so on. The Tertiary Jungja Basin is located in the southeastern coastal area of the Korea Peninsula. Jungja Basin area is created by geotectonic movement of the plate after Early Miocene epoch. The northwestern and southwestern boundary of the basin is fault zone. The Basement rock is hornfels (Ulsan Formation). Basin-fills consist of extrusive volcanic rock(Tangsa Andesites), unconsolidated fluviatile conglomerate(Kangdong Formation) and shallow brackish-water sandstone(Sinhyun Formation). The characteristics of cut slopes in this area is different with cut slopes in the other site. Soil layers in this area is unconsolidated sediments and is not formed the weathering and erosion of the rock. So, the depth of soil layer is very thick. Faults of this area are northwest-southeast and northeast-southwest direction. Expandible clay mineral as smectite, chlorite et al. detected from fault gouge using XRD. Therefore, Jungja Basin area must consider the characteristics of the faults and soil layers thickness necessarily cut slopes stability analysis.

  • PDF

Experimental Study on Behavior of High Strength Bolted Friction Joint with Oversized and Slotted Holes (과대구멍과 슬롯구멍을 갖는 고력볼트 마찰이음부의 거동에 관한 실험적 연구)

  • Kim, Yong Hwan;Roh, Won Kyoung;Lee, Seong Hui;Kim, Jin Ho;Choi, Sung Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.6
    • /
    • pp.683-690
    • /
    • 2008
  • When steel fabricators erect structural members in field, temporary tightening of fastener should be useful. However, if bolt holes are not aligned by production error or natural condition, additional effort andpain should be provided to align bolt holes. It lead to longer period than times of construction (a primarily day of construction) and more cost than originally cost. This problem will be overcomed by oversize or slotted holes. Early, AISC and Eurocode have included provision for design process such oversize or slotted holes. But, domestic design method is not refered about oversize and slotted holes. Meanwhile, domestic design method and construction environment are variance with Europe and the United States of America. Therefore, a suitable design method for oversize and slotted holes in domestic real condition is needed. In this study, we evaluated behavior of the joints and decided the friction coefficient on oversize and slotted holes of friction joints with high strength bolts.

A Study on the Estimation of Adhesive Stability According to Organic.lnorganic Mixed Tile Bond Type for Application of Polishing Tile to Dry Wall System (건식벽체에 폴리싱타일을 적용하기 위한 유기.무기질 혼합계 타일접착제 종류에 따른 부착안정성 평가에 관한 연구)

  • Oh, Sang-Keun;Lee, Gi-Jang;Yoo, Jae-Kang;Kim, Su-Ryun;Lee, Sung-Il
    • Journal of the Korea Institute of Building Construction
    • /
    • v.2 no.3
    • /
    • pp.163-170
    • /
    • 2002
  • Recently, polishing tile(porcelain homogeneous polished tile) was used in the construction field as a finishing material. But, there happened some problems such as tile exfoliation by construction condition in early ages. Also, for use of polishing tile in the dry wall system which used to lightweight wall, the examination of adhesive stability of polishing tile is needed. In this study, adhesive strength of Polishing tile was investigated by tile bond types on gypsum board and non asbestos board coated by tar-urethane and Polymer modified cementitious waterproofing membrane(Series I). Then, the effect of heat stress and vibration was estimated on gypsum and non asbestos board(Series II). As the result of study are the follows; (1) Polishing tile(600$\times$400mm) construction on waterproofing layer : Both laboratory estimation and spot examination sieve were happened that fall of tile because their hardening speed is late. (2) To using powder style adhesives in the dry wail with waterproofing layer : Adhesive strength of tile is Influenced by interface bond area and base side condition. (3) Shock and heat stresses : obvious decline of adhesive strength is not happened

A Study on Productivity Improvement Scheme Through Site Case Study In PSM (현장 사례를 통한 PSM 공법의 생산성 향상 방안에 관한 연구)

  • Lee Tai Sik;Lee Won Yong;Kim Gil Hong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.541-544
    • /
    • 2001
  • PC Box Girder was constructed by PSM(Precast Span Method) to solve the shortage of the construction period. The site case study was used in the PSM to find the construction productivity improvement. In this case study, main reasons of low productivity were founded unskilled technical engineers and insufficient equipment management winter season concrete curing condition. Productivity improvements are presented by assigning production personnel appropriately, motivation which increased by providing incentives for technical engineers, strictly cooperation of each participant, organizational teamwork, and Promoting productive work condition. Additional method of productivity improvements are continuous improvement of the work methods by considering the feedback on previous work, and continuous training to best handle the site conditions. This study of productivity improvement will help to use the most advantage of the PSM method and desire to successfully plan the future construction performance.

  • PDF

Dynamic risk assessment of water inrush in tunnelling and software development

  • Li, L.P.;Lei, T.;Li, S.C.;Xu, Z.H.;Xue, Y.G.;Shi, S.S.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.57-81
    • /
    • 2015
  • Water inrush and mud outburst always restricts the tunnel constructions in mountain area, which becomes a major geological barrier against the development of underground engineering. In view of the complex disaster-causing mechanism and difficult quantitative predictions of water inrush and mud outburst, several theoretical methods are adopted to realize dynamic assessment of water inrush in the progressive process of tunnel construction. Concerning both the geological condition and construction situation, eleven risk factors are quantitatively described and an assessment system is developed to evaluate the water inrush risk. In the static assessment, the weights of eight risk factors about the geological condition are determined using Analytic Hierarchy Process (AHP). Each factor is scored by experts and the synthesis scores are weighted. The risk level is ultimately determined based on the scoring outcome which is derived from the sum of products of weights and comprehensive scores. In the secondary assessment, the eight risk factors in static assessment and three factors about construction situation are quantitatively analyzed using fuzzy evaluation method. Subordinate levels and weight of factors are prepared and then used to calculate the comprehensive subordinate degree and risk level. In the dynamic assessment, the classical field of the eleven risk factors is normalized by using the extension evaluation method. From the input of the matter-element, weights of risk factors are determined and correlation analysis is carried out to determine the risk level. This system has been applied to the dynamic assessment of water inrush during construction of the Yuanliangshan tunnel of Yuhuai Railway. The assessment results are consistent with the actual excavation, which verifies the rationality and feasibility of the software. The developed system is believed capable to be back-up and applied for risk assessment of water inrush in the underground engineering construction.

Experimental Study on the Sand and Gravel Embankment in Winter Season (사역재료의 동기성토에 관한 실험적연구)

  • 이형수
    • Water for future
    • /
    • v.6 no.2
    • /
    • pp.12-18
    • /
    • 1973
  • This paper describes the study and test for sand and gravel embankment in winter season and also contribute to the development of construction method for the practical purposes. In order to make possible sand and gravel embankment in winter season, at first, the following eriteria on work are given under the normal weather condition: 1) The maximum diameter of material shall not exceed 30cm and sand content which is the ratio of the weight of sand to gravel shall not exceed 60% 2) Spreading depth shall not exceed 60cm each layer of material shall be compacted by over 6 times passing by thell ton smooth drum type of uibratory roller and the relative density shall exceed 60% In addition to the above conditions, the following criteria are given as winter season condition. 3) Sand contsnt shall not exceed 25%, and water content shall not exceed 4% 4) Dwing construction, the air temperature should be $70^{\circ}C$ below zero at minimum and $3^{\circ}C$ below zero onthe average and all the construction work should he continued without intersuptions. With above criteria, it is come to a conclusion that the conclusion that the construction of sand and gravel embankment in winter season will be done satisfactorily without any difficulty. On the basis of these criteria an actual construction was practiced and it was proved that those criteria are applicable to actual embankment of materials.

  • PDF

Work Condition Effects of Construction Field Managers and Safety Managers on Job Satisfaction (건설현장 관리자와 안전관리 담당자의 근로조건이 직무만족에 미치는 영향 분석)

  • Choi, Jae-Kyu;Hong, Jung-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.17 no.1
    • /
    • pp.91-100
    • /
    • 2017
  • The safety management is one of important factors. However, the satisfaction of safety manager is lowering. Therefore, this study focuses on comparing the impact that working conditions have on the job satisfaction of field and safety manager in construction field. The results of in this study, the basic wage, medical care, and leisure activity were analyzed as a positive impact on job satisfaction. In addition, the comparison result of the field manager and safety manager showed that safety manager appeared to be a greater impact on the basic wage than the field manager. Also, this study showed that the medical care and leisure activity have a positive impact on the job satisfaction of field manager, but the industrial accident and accommodation facility have a positive impact on the job satisfaction of safety manager.