• Title/Summary/Keyword: Constraint frame

Search Result 140, Processing Time 0.027 seconds

Optimal Camera Arrangement for Automatic Recognition of Steel Material based on Augmented Reality in Outdoor Environment (실외 환경에서의 증강 현실 기반의 자재 인식을 위한 최적의 카메라 배치)

  • Do, Hyun-Min;Kim, Bong-Keun
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.143-151
    • /
    • 2010
  • Automation and robotization has been required in construction for several decades and construction industry has become one of the important research areas in the field of service robotics. Especially in the steel construction, automatic recognition of structural steel members in the stockyard is emphasized. However, since the pose of steel frame in the stockyard is site dependent and also the stockyard is usually in the outdoor environment, it is difficult to determine the pose automatically. This paper adopts the recognition method based on the augmented reality to cope with this problem. Particularly focusing on the light condition of the outdoor environment, we formulated the optimization problem with the constraint and suggested the methodology to evaluate the optimal camera arrangement. From simulation results, sub-optimal solution for the position of the camera can be obtained.

Position Control of Mobile Robot for Human-Following in Intelligent Space with Distributed Sensors

  • Jin Tae-Seok;Lee Jang-Myung;Hashimoto Hideki
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.2
    • /
    • pp.204-216
    • /
    • 2006
  • Latest advances in hardware technology and state of the art of mobile robot and artificial intelligence research can be employed to develop autonomous and distributed monitoring systems. And mobile service robot requires the perception of its present position to coexist with humans and support humans effectively in populated environments. To realize these abilities, robot needs to keep track of relevant changes in the environment. This paper proposes a localization of mobile robot using the images by distributed intelligent networked devices (DINDs) in intelligent space (ISpace) is used in order to achieve these goals. This scheme combines data from the observed position using dead-reckoning sensors and the estimated position using images of moving object, such as those of a walking human, used to determine the moving location of a mobile robot. The moving object is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Using the a priori known path of a moving object and a perspective camera model, the geometric constraint equations that represent the relation between image frame coordinates of a moving object and the estimated position of the robot are derived. The proposed method utilizes the error between the observed and estimated image coordinates to localize the mobile robot, and the Kalman filtering scheme is used to estimate the location of moving robot. The proposed approach is applied for a mobile robot in ISpace to show the reduction of uncertainty in the determining of the location of the mobile robot. Its performance is verified by computer simulation and experiment.

Dynamic Balancing in a Link Motion Punch Press (링크모션 펀치프레스의 다이나믹 발란싱)

  • Suh, Jin-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.415-426
    • /
    • 2007
  • In a link motion punch press, numerous links are interconnected and each link executes a constrained motion at high speed. As a consequence, dynamic unbalance force and moment are transmitted to the main frame of the press, which results in unwanted vibration. This degrades productivity and precise stamping work of the press. This paper presents an effective method for reducing dynamic unbalance in a link motion punch press based upon kinematic and dynamic analyses. Firstly, the kinematic analysis is carried out in order to understand the fundamental characteristics of the link motion mechanism. Then design variable approach is presented in order to automate the model setup for the mechanism whenever design changes are necessary. To obtain the inertia properties of the links such as mass, mass moment of inertia, and the center of mass, 3-dimensional CAD software was utilized. Dynamic simulations were carried out for various combinations of design changes on some links having significant influences on kinematic and dynamic behavior of the mechanism.

Tracking of Walking Human Based on Position Uncertainty of Dynamic Vision Sensor of Quadcopter UAV (UAV기반 동적영상센서의 위치불확실성을 통한 보행자 추정)

  • Lee, Junghyun;Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • The accuracy of small and low-cost CCD cameras is insufficient to provide data for precisely tracking unmanned aerial vehicles (UAVs). This study shows how a quad rotor UAV can hover on a human targeted tracking object by using data from a CCD camera rather than imprecise GPS data. To realize this, quadcopter UAVs need to recognize their position and posture in known environments as well as unknown environments. Moreover, it is necessary for their localization to occur naturally. It is desirable for UAVs to estimate their position by solving uncertainty for quadcopter UAV hovering, as this is one of the most important problems. In this paper, we describe a method for determining the altitude of a quadcopter UAV using image information of a moving object like a walking human. This method combines the observed position from GPS sensors and the estimated position from images captured by a fixed camera to localize a UAV. Using the a priori known path of a quadcopter UAV in the world coordinates and a perspective camera model, we derive the geometric constraint equations that represent the relation between image frame coordinates for a moving object and the estimated quadcopter UAV's altitude. Since the equations are based on the geometric constraint equation, measurement error may exist all the time. The proposed method utilizes the error between the observed and estimated image coordinates to localize the quadcopter UAV. The Kalman filter scheme is applied for this method. Its performance is verified by a computer simulation and experiments.

Fuzzy Optimum Design of Plane Steel Frames Using Refined Plastic Hinge Analysis and a Genetic Algorithm (개선소성힌지해석과 유전자 알고리듬을 이용한 평면 강골조 구조물의 퍼지최적설계)

  • Lee, Mal Suk;Yun, Young Mook;Shon, Su Deok
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.147-160
    • /
    • 2006
  • GA-based fuzzy optimum design algorithm incorporated with the refined plastic hinge analysis method is presented in this study. In the refined plastic hinge analysis method, geometric nonlinearity is considered by using the stability functions of the beam-column members. Material nonlinearity is also considered by using the gradual stiffness degradation model, which considers the effects of residual stresses, moment redistribution through the occurence of plastic hinges, and the geometric imperfections of the members. In the genetic algorithm, the tournament selection method and the total weight of the steel frames. The requirements of load-carrying capacity, serviceability, ductility, and constructabil ity are used as the constraint conditions. In fuzzy optimization, for crisp objective function and fuzzy constraint s, the tolerance that is accepted is 5% of the constraints. Furthermore, a level-cut method is presented from 0 to 1 at a 0 .2 interval, with the use of the nonmembership function, to solve fuzzy-optimization problems. The values of conventional GA optimization and fuzzy GA optimization are compared in several examples of steel structures.

Study on Hull Form Variation of Fore Body Based on Multiple Parametric Modification Curves (다중 파라메트릭 변환곡선 기반 선수 선형 변환기법 연구)

  • Park, Sung-Woo;Kim, Seung-Hyeon;Lee, Inwon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.59 no.2
    • /
    • pp.96-108
    • /
    • 2022
  • In this paper, we propose a systematic hull form variation technique which automatically satisfies the displacement constraint and guarantees a high level of fairness. This method is possible through multiple parameter correction curves. The present method is to improve the hull form variation method based on parametric modification function and consists of two sub-categories: SAC variation and section lines modification. For SAC variation, the utilization of two B-Spline curves satisfying GC1 condition led to the satisfaction of displacement constraint and high level of fairness at the same time. Section lines modification methods involves in using two fuctions: the first is the waterplane modification function combining two cubic splines. the other function is the sectional area modification function consisting of 2nd order polynomial over the DLWL(Design Load Waterline) and 3rd order polynomial below the DLWL, This function enables not only the fundamental U-V section shape variation but also systematically modified section lines. The present method is expected to be more useful in the hull form optimization process using CFD compared to the existing method.

Optimal Time Structure for Tag Cognizance Scheme based on Framed and Slotted ALOHA in RFID Networks (RFID 망에서 프레임화 및 슬롯화된 ALOHA에 기반한 Tag 인식 방식을 위한 최적 시간 구조)

  • Choi, Cheon-Won
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.9
    • /
    • pp.29-36
    • /
    • 2010
  • Consider an RFID network configured as a star such that a single reader is surrounded by a crowd of tags. In the RFID network, prior to attaining the information stored at a tag, the reader must cognize the tags while arbitrating a collision among tags' responses. For this purpose, we present a tag cognizance scheme based on framed and slotted ALOHA, which statically provides a number of slots in each frame for the tags to respond. For the evaluation of the cognizance performance, we choose the cognizance completion probability and the expected cognizance completion time as key performance measures. Then, we present a method to numerically calculate the performance measures. Especially, for small numbers of tags, we derive them in a closed form. Next, we formulate a problem to find an optimal time structure which either maximizes the cognizance completion probability under a constraint on the cognizance time or minimizes the expected cognizance completion time. By solving the problem, we finally obtain an optimal number of slots per frame for the tags to respond. From numerical results, we confirm that there exist a finite optimal number of slots for the tags to respond. Also, we observe that the optimal number of slots maximizing the cognizance completion probability tends to approach to the optimal number of slots minimizing the expected cognizance completion time as the constraint on the cognizance time becomes loose.

Member Sizing Optimization for Seismic Design of the Inverted V-braced Steel Frames with Suspended Zipper Strut (Zipper를 가진 역V형 가새골조의 다목적 최적내진설계기법)

  • Oh, Byung-Kwan;Park, Hyo-Seon;Choi, Se-Woon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.6
    • /
    • pp.555-562
    • /
    • 2016
  • Seismic design of braced frames that simultaneously considers economic issues and structural performance represents a rather complicated engineering problem, and therefore, a systematic and well-established methodology is needed. This study proposes a multi-objective seismic design method for an inverted V-braced frame with suspended zipper struts that uses the non-dominated sorting genetic algorithm-II(NSGA-II). The structural weight and the maximum inter-story drift ratio as the objective functions are simultaneously minimized to optimize the cost and seismic performance of the structure. To investigate which of strength- and performance-based design criteria for braced frames is the critical design condition, the constraint conditions on the two design methods are simultaneously considered (i.e. the constraint conditions based on the strength and plastic deformation of members). The linear static analysis method and the nonlinear static analysis method are adopted to check the strength- and plastic deformation-based design constraints, respectively. The proposed optimal method are applied to three- and six-story steel frame examples, and the solutions improved for the considered objective functions were found.

Implementation of Intelligent Image Surveillance System based Context (컨텍스트 기반의 지능형 영상 감시 시스템 구현에 관한 연구)

  • Moon, Sung-Ryong;Shin, Seong
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.3
    • /
    • pp.11-22
    • /
    • 2010
  • This paper is a study on implementation of intelligent image surveillance system using context information and supplements temporal-spatial constraint, the weak point in which it is hard to process it in real time. In this paper, we propose scene analysis algorithm which can be processed in real time in various environments at low resolution video(320*240) comprised of 30 frames per second. The proposed algorithm gets rid of background and meaningless frame among continuous frames. And, this paper uses wavelet transform and edge histogram to detect shot boundary. Next, representative key-frame in shot boundary is selected by key-frame selection parameter and edge histogram, mathematical morphology are used to detect only motion region. We define each four basic contexts in accordance with angles of feature points by applying vertical and horizontal ratio for the motion region of detected object. These are standing, laying, seating and walking. Finally, we carry out scene analysis by defining simple context model composed with general context and emergency context through estimating each context's connection status and configure a system in order to check real time processing possibility. The proposed system shows the performance of 92.5% in terms of recognition rate for a video of low resolution and processing speed is 0.74 second in average per frame, so that we can check real time processing is possible.

Lightweight Design of Brake Bracket for Composite Bogie Using Topology Optimization (위상 최적 설계를 통한 복합소재 대차프레임용 제동장치 브래킷의 경량화 연구)

  • Lee, Woo Geun;Kim, Jung Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.283-289
    • /
    • 2015
  • In this study, the lightweight design of a brake bracket for a composite bogie was studied by considering two brake bracket models with thicknesses of 12t and 9t, respectively. For achieving this goal, finite element analysis and topology optimization were conducted. Firstly, the largest cross-sectional areas of the vertical and horizontal plates of the brake bracket were selected as the design variables. As the constraint, the Z-axis displacement of the brake bracket was increased by 2.5 units from the initial displacement value. The minimum volume fraction of the design regions was chosen as the objective function. The full model comprised a composite bogie frame and brackets attached together. However, to reduce the analysis time, 1D beam elements were used instead of the composite bogie frame by ensuring its equivalence with the full model. The result revealed that the weights of the 12t and 9t models of the brake bracket were reduced to 60 kg and 31 kg, respectively.