• Title/Summary/Keyword: Constraint Force

Search Result 191, Processing Time 0.027 seconds

A hybrid position/force control for robot manipulator with position controllers (위치 제어기를 갖는 로보트 매니퓰레이터의 Hybrid 위치/힘 제어)

  • 이병부;정광손;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.638-641
    • /
    • 1992
  • In this paper, a hybrid position/force control scheme is proposed. The control scheme modifies the position command for force control against constraint surface of environment and is very simply designed and implemented. The merits of the control scheme are that it can cope with change of constraint conditions and small position inaccuracy of the environment. A constraint surface position observer is also proposed to reduce disturbances on controlled force.

  • PDF

Dynamic Optimization Algorithm of Constrained Motion

  • Eun, Hee-Chang;Yang, Keun-Heok;Chung, Heon-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.8
    • /
    • pp.1072-1078
    • /
    • 2002
  • The constrained motion requires the determination of constraint force acting on unconstrained systems for satisfying given constraints. Most of the methods to decide the force depend on numerical approaches such that the Lagrange multiplier method, and the other methods need vector analysis or complicated intermediate process. In 1992, Udwadia and Kalaba presented the generalized inverse method to describe the constrained motion as well as to calculate the constraint force. The generalized inverse method has the advantages which do not require any linearization process for the control of nonlinear systems and can explicitly describe the motion of holonomically and/or nongolonomically constrained systems. In this paper, an explicit equation to describe the constrained motion is derived by minimizing the performance index, which is a function of constraint force vector, with respect to the constraint force. At this time, it is shown that the positive-definite weighting matrix in the performance index must be the inverse of mass matrix on the basis of the Gauss's principle and the derived differential equation coincides with the generalized inverse method. The effectiveness of this method is illustrated by means of two numerical applications.

Estimation Method for Kinematic Constraint of Unknown Object by Active Sensing (미지 물체의 구속상태에 관한 실시간 추정방법)

  • Hwang Chang-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.188-200
    • /
    • 2005
  • Control of a multi-fingered robotic hand is usually based on the theoretical analysis for kinematics and dynamics of fingers and of object. However, the implementation of such analyses to robotic hands is difficult because of errors and uncertainties in the real situations. This article presents the control method for estimating the kinematic constraint of an unknown object by active sensing. The experimental system has a two-fingered robotic hand suspended vertically for manipulation in the vertical plane. The fingers with three degrees-of-freedom are driven by wires directly connected to voice-coil motors without reduction gears. The fingers are equipped with three-axis force sensors and with dynamic tactile sensors that detect slippage between the fingertip surfaces and the object. In order to make an accurate estimation for the kinematic constraint of the unknown object, i.e. the constraint direction and the constraint center, four kinds of the active sensing and feedback control algorithm were developed: two position-based algorithms and two force-based algorithms. Furthermore, the compound and effective algorithm was also developed by combining two algorithms. Force sensors are mainly used to adapt errors and uncertainties encountered during the constraint estimation. Several experimental results involving the motion of lifting a finger off an unknown object are presented.

Topology Design of Rigid-String Mechanism Using Constraint Force Design Method (구속조건 힘 설계기법을 이용한 강체와 스트링의 위상 최적설계)

  • Heo, Jae-Chung;Yoon, Gil-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.7
    • /
    • pp.745-750
    • /
    • 2012
  • This study extends the constraint force design method allowing topology optimization for planar rigid-link and string mechanisms. To our best knowledge, by applying conventional machine and mechanism design theories, it is likely that it is possible to find out optimal locations of joints and lengths of rigid-links but somewhat difficult to find out optimal topology of rigid-links. To achieve optimal topology of rigid links, there is our previous contribution so called the new constraint force design method with the binary design variables determining the existence of the auxiliary forces imposing apparent lengths among unit masses. By adding new binary design variables, this research extends the constraint force design method to find out optimal mechanism consisting of stringy links as well as rigid links that seems impossible in the conventional machine and mechanism design theories.

A Study on the Application of Adaptive Control Constraint to Maintain Constant Cutting force in Turning (선삭에서 일정 절삭력 유지를 위한 구속 적응제어에 관한 연구)

  • 김인수;황홍연;김광준
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.3
    • /
    • pp.376-382
    • /
    • 1986
  • Adaptive control constraint (ACC) is applied to a turning process to keep the cutting force constant while the cutting conditions vary. In this system, a given reference force is compared with the measured cutting force and difference is input to the controller to adjust the feed. Since it is found that the effective ACC loop gain depends on both depth-of-cut and spindle speed and thereby influence the system stability, a simple computer algorithm is built in the controller to maintain the stability of the whole system by on-line estimation of the process parameters during cutting.

Dynamic Contact Analysis of Spur Gears (평기어의 동접촉 해석)

  • Lee, Ki-Su;Jang, Tae-Sa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.6
    • /
    • pp.148-159
    • /
    • 1999
  • A numerical method is presented for the dynamic analysis of spur gears rotating with very high angular speeds. For an efficient computation each gear is assumed to consist of a rotating rigid disk and an elastic tooth having mass, and finite element formulations are used for the equations of motion of the tooth. The geometric constraint is imposed between the rigid disk and the elastic tooth to fix them, and contact condition is imposed between the meshing teeth of the gears. At each iteration of each time step the Lagrange multiplier and contact force are revised by using the constraint error vector, and then the whole equations of motion are time integrated with the given Lagrange multiplier and contact force. For the accurate solution the velocity and acceleration constraints as well as the displacement constraint are satisfied by the monotone reductions of the constraint error vectors. Computing procedures associated with the iterative schemes are explained and numerical simulations are conducted with the spur gears.

  • PDF

Unified Chassis Control with ESC and AFS under Lateral Tire Force Constraint on AFS (타이어 횡력 제한 조건 하에서 ESC와 AFS를 이용한 통합 섀시 제어)

  • Yim, Seongjin;Nam, Gi Hong;Lee, Ho Seok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.595-601
    • /
    • 2015
  • This paper presents an unified chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. When generating the control yaw moment, an optimization problem is formulated in order to determine the tire forces, generated by ESC and AFS. With Karush-Kuhn-Tucker optimality condition, the optimum tire forces can be algebraically calculated. On low friction road, the lateral force in front wheels is easily saturation. When saturated, AFS cannot generate the required control yaw moment. To cope with this problem, new constraint on the lateral tire force is added into the original optimization problem. To check the effectiveness of the propose method, simulation is performed on the vehicle simulation package, CarSim.

Development of Multi-body Dynamics Analysis Program with Constraints using CFEM (CFEM을 이용한 구속조건이 있는 다물체 운동해석 프로그램 개발)

  • Park, Sun-Ho;Lee, Seung-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.101-107
    • /
    • 2012
  • In this study, Constraint Force Equation Methodology (CFEM) is used to develop a multi-body dynamic analysis program with constraints. Seven constraint models are implemented to analyze constraint motions of multiple bodies. The augmented equations with the constraints are solved with the 4th order Runge-Kutta method for higher degree of accuracy. The analysis code is verified by comparing the analysis results of the motion of bodies with various constraints to published results.

Virtual Network Embedding based on Node Connectivity Awareness and Path Integration Evaluation

  • Zhao, Zhiyuan;Meng, Xiangru;Su, Yuze;Li, Zhentao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3393-3412
    • /
    • 2017
  • As a main challenge in network virtualization, virtual network embedding problem is increasingly important and heuristic algorithms are of great interest. Aiming at the problems of poor correlation in node embedding and link embedding, long distance between adjacent virtual nodes and imbalance resource consumption of network components during embedding, we herein propose a two-stage virtual network embedding algorithm NA-PVNM. In node embedding stage, resource requirement and breadth first search algorithm are introduced to sort virtual nodes, and a node fitness function is developed to find the best substrate node. In link embedding stage, a path fitness function is developed to find the best path in which available bandwidth, CPU and path length are considered. Simulation results showed that the proposed algorithm could shorten link embedding distance, increase the acceptance ratio and revenue to cost ratio compared to previously reported algorithms. We also analyzed the impact of position constraint and substrate network attribute on algorithm performance, as well as the utilization of the substrate network resources during embedding via simulation. The results showed that, under the constraint of substrate resource distribution and virtual network requests, the critical factor of improving success ratio is to reduce resource consumption during embedding.

A Study on Low Power Force-Directed scheduling for Optimal module selection Architecture Synthesis (최적 모듈 선택 아키텍쳐 합성을 위한 저전력 Force-Directed 스케쥴링에 관한 연구)

  • Choi Ji-young;Kim Hi-seok
    • Proceedings of the IEEK Conference
    • /
    • 2004.06b
    • /
    • pp.459-462
    • /
    • 2004
  • In this paper, we present a reducing power consumption of a scheduling for module selection under the time constraint. A a reducing power consumption of a scheduling for module selection under the time constraint execute scheduling and allocation for considering the switching activity. The focus scheduling of this phase adopt Force-Directed Scheduling for low power to existed Force-Directed Scheduling. and it constructs the module selection RT library by in account consideration the mutual correlation of parameters in which the power and the area and delay. when it is, in this paper we formulate the module selection method as a multi-objective optimization and propose a branch and bound approach to explore the large design space of module selection. Therefore, the optimal module selection method proposed to consider power, area, delay parameter at the same time. The comparison experiment analyzed a point of difference between the existed FDS algorithm and a new FDS_RPC algorithm.

  • PDF