• Title/Summary/Keyword: Constraint Effect

Search Result 444, Processing Time 0.028 seconds

Vibration Characteristics of A Rectangular Tank in accordance with Changing Thickness And Boundary Condition (경계조건과 두께 변화에 따른 사각탱크의 진동 특성)

  • Bae, S.Y.
    • Journal of Power System Engineering
    • /
    • v.15 no.1
    • /
    • pp.24-31
    • /
    • 2011
  • Rectangular box type structures are used in many fields of civil, mechanical and marine engineering. Especially, Most ship structures are often in contact with inner or outer fluid, like ballast, fuel and stem tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these thin walled tanks in contact with fluid near engine and propeller are strongly affected by added mass of containing fluid. Therefore it is essentially important to estimate the added mass effect to predict vibration of the tanks. Many authors have studied vibration of rectangular tanks containing fluid. Few research on dynamic interaction among tank walls filled with fluid are reported in the vibration of rectangular tanks recently. In case of rectangular tanks, structural coupling between adjacent panels and effect of vibration modes of multiple panels on added mass of water have to be considered. In the previous report, a numerical analysis is performed for the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing breadth of the plates by using finite element method for plates and boundary element method for fluid region. In this paper, the coupling effect between panels of a tank on added mass of containing fluid, the effect of structural constraint between panels on each vibration mode for fluid region, and mode characteristics in accordance with changing length, thickness, and boundary condition of the plates are investigated numerically and discussed.

Effect On-line Automatic Signature Verification by Improved DTW (개선된 DTW를 통한 효과적인 서명인식 시스템의 제안)

  • Dong-uk Cho;Gun-hee Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.4 no.2
    • /
    • pp.87-95
    • /
    • 2003
  • Dynamic Programming Matching (DPM) is a mathematical optimization technique for sequentially structured problems, which has, over the years, played a major role in providing primary algorithms in pattern recognition fields. Most practical applications of this method in signature verification have been based on the practical implementational version proposed by Sakoe and Chiba [9], and il usually applied as a case of slope constraint p = 0. We found, in this case, a modified version of DPM by applying a heuristic (forward seeking) implementation is more efficient, offering significantly reduced processing complexity as well as slightly improved verification performance.

  • PDF

Implementation of A Spatial 3-DOF Haptic Mechanism (공간형 3 자유도 Haptic 메커니즘의 구현)

  • 이재훈;이수강;이병주;이석희;이정헌;김희국
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.312-316
    • /
    • 2004
  • In this study, a spatial 3-dof haptic mechanism is implemented. The implemented mechanism does not employ the gear transmissions as velocity reducers for all three joints but uses wire-based transmissions, thereby it is able to minimize the frictions significantly. Also, by employing the structure of the four-bar mechanism to drive third joint from close to the base, the mechanism is able to minimize the inertia effect from the third actuator very effectively. Its kinematic analysis such as position and velocity analyses are performed first. Then, its operating software development, hardware implementation, and the related interfaces between a PC and the implemented Haptic device are completed. To evaluate its potential and its performance as a haptic device, a experiment generating a virtual constraint in a operational task space is conducted and preliminary results are discussed.

  • PDF

Mass optimization of four bar linkage using genetic algorithms with dual bending and buckling constraints

  • Hassan, M.R.A.;Azid, I.A.;Ramasamy, M.;Kadesan, J.;Seetharamu, K.N.;Kwan, A.S.K.;Arunasalam, P.
    • Structural Engineering and Mechanics
    • /
    • v.35 no.1
    • /
    • pp.83-98
    • /
    • 2010
  • In this paper, the mass optimization of four bar linkages is carried out using genetic algorithms (GA) with single and dual constraints. The single constraint of bending stress and the dual constraints of bending and buckling stresses are imposed. From the movement response of the bar linkage mechanism, the analysis of the mechanism is developed using the combination of kinematics, kinetics, and finite element analysis (FEA). A penalty-based transformation technique is used to convert the constrained problem into an unconstrained one. Lastly, a detailed comparison on the effect of single constraint and of dual constraints is presented.

Tensile Properties of Unidirectionally Solidified $Al-CuAl_2$ Eutectic Composite (일방향응고시킨 $Al-CuAl_2$ 공정복합재료의 인장성질)

  • Hong, Young-Hwan;Hong, Jong-Hwi
    • Journal of Korea Foundry Society
    • /
    • v.10 no.6
    • /
    • pp.503-508
    • /
    • 1990
  • The effect of interlamellar spacing on tensile behavior and fracture mode at high temperatures has been studied for unidirectionally solidified $Al-CuAl_2$ eutectic composite. The tensile properties at room temperature in $Al-CuAl_2$ eutectic composite improved as the interlamellar spacing decreased due to the constraint effects of closely spaced lamellae, while the opposite behavior was observed at high temperatures due to the annihilation of the constraint effects by phase boundary sliding. The $Al-CuAl_2$ eutectic composite exhibited brittle fracture mode below the temperature at which the reinforcing phase softened but ductile fracture mode above the temperature.

  • PDF

Robust control of PID control system using Neural network-Supervisory controller (신경망-관리 제어기를 이용한 PID 제어 시스템의 강인제어)

  • Ji, Bong-Chul;Choi, Seok-Ho;Park, Wal-Seo;Ryu, In-Ho;Choi, Hyeon-Seob
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.791-793
    • /
    • 1999
  • In this paper, neural network-supervisory control method is proposed to minimize the effect of system uncertainty by load change and disturbance in the PID control system. In the proposed method, PID controller performs main control action by performing control within constraint error. And neural network-supervisory controller performs control action when error reaches the boundary of constraint error. Combining neural network-supervisory controller to guarantee the stability into PID control system, the resulting PID control system is expected to show better performance in the system with load change and disturbance. Simulation applying PID controller and neural network-supervisory controller showed excellence of proposed method.

  • PDF

Selecting the Critical Resources Using DBR on Multi-parameters (DBR 스케줄링에 있어 제약자원 선정에 관한 연구)

  • 서장훈;홍석묵;박명규
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.1
    • /
    • pp.131-139
    • /
    • 2002
  • Since introducing the "Theory of Constraints" by Goldratt, its effect was verified by lots of scholars, men of enterprise. These days it is also introducing and studying in this country with good results. The objective of this study is to show how to determine the constraint resources on DBR scheduling. Actually, previous studies based on the line which just think a load/capacity rate on doing scheduling. This study will show a scheduling method which reflects multi-parameters. It could be a standard to reflect real manufacturing surroundings. On calculating a priority of each resources, we classified factors with subjective and objective factors. And we propose a decision model to incorporate values assigned by a group of experts on different factors to select a critical resource. On deploying this model, SN ratio of Taguchi method for each of subjective and objective factors will be used. And we propose a procedure which is organized with 7 steps. To understand the logic, a numerical manufacturing simulation will be presented. This method is a incorporating decision model on determining the constraint on multi parameters with experts.h experts.

Optimal design using genetic algorithm with nonlinear elastic analysis

  • Kim, Seung-Eock;Song, Weon-Keun;Ma, Sang-Soo
    • Structural Engineering and Mechanics
    • /
    • v.17 no.5
    • /
    • pp.707-725
    • /
    • 2004
  • An optimal design method with nonlinear elastic analysis is presented. The proposed nonlinear elastic method overcomes the drawback of the conventional LRFD method that accounts for nonlinear effect by using the moment amplification factors of $B_1$ and $B_2$. The genetic algorithm used is a procedure based on Darwinian notions of survival of the fittest, where selection, crossover, and mutation operators are employed to look for high performance ones among sections in the database. They are satisfied with the constraint functions and give the lightest weight to the structure. The objective function taken is the total weight of the steel structure and the constraint functions are strength, serviceability, and ductility requirement. Case studies of a planar portal frame, a space two-story frame, and a three-dimensional steel arch bridge are presented.

Voltage Stability Constrained Optimal Power Flow based on Successive Linear Programming (전압안정도를 고려한 연속선형계획법 기반 최적조류계산)

  • Bae, Seung-Chul;Shin, Yong-Son;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.220-223
    • /
    • 2003
  • This paper presents VSCOPF(Votage Stability Constrained Optimal Power Flow) algorithm based on SLP(Successive Linear Programming) to interpret the large scale system. Voltage stability index used to this paper is L index to be presented by function form. The objective function consists of load shedding cost minimization. Voltage stability indicator constraint was incorporated in traditional OPF formulation. as well as the objective function and constraints are linearlized and the optimal problem is performed by SLP(Successive Linear Programming). In this paper, the effect of voltage stability limit constraint is showed in the optimal load curtailment problems. As a result, an optimal solution is calculated to minimize load shedding cost guaranteeing voltage security level. Numerical examples using IEEE 39-bus system is also presented to illustrate the capabilities of the proposed formulation.

  • PDF

Synthesis of four-bar linkage motion generation using optimization algorithms

  • Phukaokaew, Wisanu;Sleesongsom, Suwin;Panagant, Natee;Bureerat, Sujin
    • Advances in Computational Design
    • /
    • v.4 no.3
    • /
    • pp.197-210
    • /
    • 2019
  • Motion generation of a four-bar linkage is a type of mechanism synthesis that has a wide range of applications such as a pick-and-place operation in manufacturing. In this research, the use of meta-heuristics for motion generation of a four-bar linkage is demonstrated. Three problems of motion generation were posed as a constrained optimization probably using the weighted sum technique to handle two types of tracking errors. A simple penalty function technique was used to deal with design constraints while three meta-heuristics including differential evolution (DE), self-adaptive differential evolution (JADE) and teaching learning based optimization (TLBO) were employed to solve the problems. Comparative results and the effect of the constraint handling technique are illustrated and discussed.