• Title/Summary/Keyword: Constitutive relation

Search Result 167, Processing Time 0.025 seconds

A Numerical Model for the Freeze-Thaw Damages in Concrete Structures

  • Cho Tae-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.857-868
    • /
    • 2005
  • This paper deals with the accumulated damage in concrete structures due to the cyclic freeze-thaw as an environmental load. The cyclic ice body nucleation and growth processes in porous systems are affected by the thermo-physical and mass transport properties, and gradients of temperature and chemical potentials. Furthermore, the diffusivity of deicing chemicals shows significantly higher value under cyclic freeze-thaw conditions. Consequently, the disintegration of concrete structures is aggravated at marine environments, higher altitudes, and northern areas. However, the properties of cyclic freeze-thaw with crack growth and diffusion of chloride ion effects are hard to be identified in tests, and there has been no analytic model for the combined degradations. The main objective is to determine the driving force and evaluate the reduced strength and stiffness by freeze-thaw. For the development of computational model of those coupled deterioration, micro-pore structure characterization, pore pressure based on the thermodynamic equilibrium, time and temperature dependent super-cooling with or without deicing salts, nonlinear-fracture constitutive relation for the evaluation of internal damage, and the effect of entrained air pores (EA) has been modeled numerically. As a result, the amount of ice volume with temperature dependent surface tensions, freezing pressure and resulting deformations, and cycle and temperature dependent pore volume has been calculated and compared with available test results. The developed computational program can be combined with DuCOM, which can calculate the early aged strength, heat of hydration, micro-pore volume, shrinkage, transportation of free water in concrete. Therefore, the developed model can be applied to evaluate those various practical degradation cases as well.

Confinement efficiency and size effect of FRP confined circular concrete columns

  • Yeh, Fang-Yao;Chang, Kuo-Chun
    • Structural Engineering and Mechanics
    • /
    • v.26 no.2
    • /
    • pp.127-150
    • /
    • 2007
  • The objective of this paper is to develop a finite element procedure for predicting the compressive strength and ultimate axial strain of Carbon Fiber Reinforced Plastics (CFRP) confined circular concrete columns and to study the effective parameters of confinement efficiency for helping design of CFRP retrofit technology. The behavior of concrete confined with CFRP is studied using the nonlinear finite element method. In this paper, effects of column size, CFRP volumetric ratio and plain concrete strength are studied. The confined concrete nonlinear constitutive relation, concrete failure criterion and stiffness reduction methodology after concrete cracking or crushing are adopted. First, the finite element model is verified by comparing the numerical solutions of confined concrete with experimental results. Then the effects of column size, CFRP volumetric ratio and plain concrete strength on the peak strength and ductility of the confined concrete are considered. The results of parametric study indicate that the normalized column axial strength increases with increasing CFRP volumetric ratio, but without size effect for columns with the same CFRP volumetric ratio. As the same, the increase in column ductility depends on CFRP volumetric ratio but without size effect for columns with the same CFRP volumetric ratio.

A Study of Lianis Model for Elastomeric Bushing in Axial Mode (일래스토메릭 부싱의 축방항모드에 대한 리아니스 모델연구)

  • Lee, Seong-Beom
    • Elastomers and Composites
    • /
    • v.37 no.3
    • /
    • pp.151-158
    • /
    • 2002
  • An elastomeric bushing which has been considered in this research is a device used in automotive suspension systems to reduce the forte transmitted iron the wheel to the frame of the vehicle. A bushing is modeled at a hollow cylinder which is bonded to a solid metal shaft at its inner surface and a metal sleeve at its outer surface. Lianis constitutive equation for a nonlinear viscoelastic incompressible material is used to model the elastomeric material of the bushing. It is used to derive a force-displacement relation for axial response of the bushing. The displacement dependent force relaxation function for the bushing is obtained from the ramp displacement control tests with an extrapolation method. This is compared with the exact result obtained from the step displacement control test and the results are in very good agreement.

Resonant Frequency in Rectangular Microstrip Patch Antenna on Anisotropic Substrates with Airgap and Permittivity Superstrate (공기갭과 유전체 덮개층을 갖는 이방성 기판 위의 마이크로스트립 패치 안테나의 공진 주파수 해석)

  • 윤중한;이상목;곽경섭
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11B
    • /
    • pp.1600-1606
    • /
    • 2001
  • Resonant frequency in rectangular microstrip patch antenna on anisotropic substrates with airgap and superstrate are analyzed. Dyadic Green function is derived for selected anisotropic material by constitutive relation. From these results, integral equations of electric fields are formulated using Fourier transform in space region. The electric field integral equations are discretized into the matrix form by applying Galerkin\`s moment method. Sinusoidal functions are selected as basis functions because they resemble in the actual standing wave on the patch. To verify the validity of numerical result, we compare our result with existing one and get a good agreement between them. From the numerical results, the resonant frequency in the variation of air gap, patch length and anisotropy ratio are presented and analysed.

  • PDF

Numerical Study on Hydrogen Absorption and Expansion Behavior on Palladium (팔라듐에 관한 수소저장과 팽창거동에 관한 수치해석)

  • Kim, S.W.;Hwang, C.M.;Jang, T.I.;Jung, Y.G.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.3
    • /
    • pp.256-264
    • /
    • 2007
  • In order to calculate the relation between the hydrogen and the hydrogen absorption metals in the atomic level, Embedded Atom Method(EAM) is recommended. In this study, we had constructed the EAM programs from constitutive formulas and parameters of the hydrogen and palladium for the purpose of predicting the expansion behavior on hydrogen absorbing in the geometric shape of hydrogen absorption metals, as palladium bars and plates. And the EAM analyses data were compared with the experiment data by using electrochemical method. As results, it is note that the expansion rate in thickness of the palladium plate model by EAM analyses is about 4 times larger than width and length, be similar to experiment results. Also, in the microscopic and macroscopic level the expansion behavior through EAM analyses show good agreement with experiment data.

An analytical solution of bending thin plates with different moduli in tension and compression

  • He, Xiao-Ting;Hu, Xing-Jian;Sun, Jun-Yi;Zheng, Zhou-Lian
    • Structural Engineering and Mechanics
    • /
    • v.36 no.3
    • /
    • pp.363-380
    • /
    • 2010
  • Materials which exhibit different elastic moduli in tension and compression are known as bimodular materials. The bimodular materials model, which is founded on the criterion of positive-negative signs of principal stress, is important for the structural analysis and design. However, due to the inherent complexity of the constitutive relation, it is difficult to obtain an analytical solution of a bimodular bending components except in particular simple problems. Based on the existent simplified model, this paper solves analytically bending thin plates with different moduli in tension and compression. By using the continuity conditions of stress components in unknown neutral layer, we determine the location of the neutral layer, and derive the governing differential equation for deflection, the flexural rigidity, and the internal forces in the thin plate. We also use a circular thin plate with bimodulus to illustrate the application of this solution derived in this paper. The results show that the introduction of different moduli has influences on the flexural stiffness of the bending thin plate.

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

Dielectric Cover effect of Rectangular Microstrip Patch Antenna on Uniaxial Substrates with Airgap (공기 갭을 갖는 일축성 매질 위에 마이크로스트립 패치 안테나의 덮개층 영향)

  • Yoon, Joong-Han;An, Gyoo-Chul;Kwak, Kyung-Sup
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.38 no.9
    • /
    • pp.29-39
    • /
    • 2001
  • Dielectric cover effect of rectangular microstrip patch antenna on uniaxial substrates with airgap are studied. First, we derive Dyadic Green function for selected anisotropic material by constitutive relation and then formulate integral equations of electric fields using Fourier transform in space region. Using Galerkin's moment method, we discretize the electric field integral equations into the matrix form and select sinusoidal functions as basis functions. We verify the validity of numerical results and compare the results with existing ones in showing a good agreement between them. When the dielectric cover thickness is varied, the resonant frequencies and input impedances in the variation of air gap, patch length and thickness and permittivity of superstrate are presented and analyzed.

  • PDF

Parameter Study for the Analysis of Impact Characteristics considering Dynamic Material Properties (동적 물성치를 고려한 V.I. 충격인자의 영향 분석)

  • Lim, J.H.;Song, J.H.;Huh, H.;Park, W.J.;Oh, I.S.;Choe, J.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.945-950
    • /
    • 2001
  • Vacuum interrupters that is used in various switchgear components such as circuit breakers, distribution switches, contactors, etc. spreads the arc uniformly over the surface of the contacts. The electrode of vacuum interrupters is used sintered Cu-Cr material satisfied with good electrical and mechanical characteristics. Because the closing velocity is 1-3m/s, the deformation of the material of electrodes depends on the strain rate and the dynamic behavior of the sintered Cu-Cr material is a key to investigate the impact characteristics of the electrodes. The dynamic response of the material at the high strain-rate is obtained from the split Hopkinson pressure bar test using cylinder type specimens. Experimental results from both quasi-static and dynamic compressive tests with the split Hopkinson pressure bar apparatus are interpolated to construct the Johnson-Cook equation as the constitutive relation that should be applied to simulation of the dynamic behavior of electrodes. To evaluate impact characteristic of a vacuum interrupter, simulation is carried out with five parameters such as initial velocity, added mass of a movable electrode, wipe spring constant, initial offset of a wipe spring and virtual fixed spring constant.

  • PDF

A Study on the Tendency of Contemporary Architecture through the Relation Between the Eye and the Gaze (시선과 응시의 관계로 본 현대건축 경향에 관한 연구)

  • Kim, Jin-Mo
    • Korean Institute of Interior Design Journal
    • /
    • v.17 no.5
    • /
    • pp.3-11
    • /
    • 2008
  • 'The eye' and 'the gaze' organize the visual system and distinguish the subject from the others. Recent philosophical thoughts have forcefully argued against the tradition characterized by the domination of the eye that assimilates the alterity of the others to one's own, cancels their alterity, and totalizes their differences within himself. In the speculative discourse modeled on the eye, the alienation of self in its other and the reflection of the object are linked together in such a way as to form a totality in which they are reflected into one's another, leaving absolutely no remainder outside. By contrast to this totalizing tendency of the eye, Sartre and Lacan propose the gaze that becomes constitutive of vision. The modern architecture reinforced subject's eye and clearly separated the others from subject Through Descartes's visual paradigm, space became homogeneous and nature was seized by architecture. However, recently the clear boundary between subject and object is disappearing. Lacan insisted that oneself's eye and the other's gaze are mixed up in human sight This means that the boundary between the subject and the other is indistinct and also the boundary between an object and landscape is meaningless in architecture. The overthrow of gaze in contemporary architecture appears in the form of trans-boundary, translucency and widen architectural notion and expression.