• Title/Summary/Keyword: Constitutive models

Search Result 390, Processing Time 0.022 seconds

Prediction of combustion field in granular propellant with moving boundary (이동경계면을 갖는 연소실내에서의 입자상의 고체연료 연소장 예측)

  • 조한창;윤재건;신현동;김종욱
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.12
    • /
    • pp.2385-2394
    • /
    • 1992
  • Granular solid propellants having energy and fast burning rate produce great thrusts within extremely short time intervals. Thus numerical researchs prevailed rather than experimental. Using a 2-phase fluid dynamics model among 1-dimensional 2-phase models, a numerical program was set up to describe reacting flow fields, moving boundary with oscillating pressure waves and constitutive laws research. It deserves special emphasis that correlations of convective heat transfer coefficient and viscous drag force among constitutive laws are tested and discussed because slight variations of their constants make a large influence on their results. In this calculations, some of correlations make the large difference in results. Therefore constitutive laws for convective heat transfer coefficient and viscous drag force need more considerations with experiments.

A Study on Clay Behavior Characteristics Based on Non-Linear Kinematic Hardening Rule (비선형 이동경화법칙에 기초한 점성토의 거동 특성)

  • Kim, Yong-Seong
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.114-122
    • /
    • 2002
  • Up to now, many constitutive models for clay have been proposed and studied based on the elasto-plastic or elasto-viscoplastic theory and it has been recognized that the effect of time on the loading process is a salient feature. In the present study, cyclic behavior characteristics of clay was studied with a viscoelastic-viscoplastic constitutive model for clay based on the non-linear kinematic hardening rule. In order to examine the behavior of clay several cyclic untrained triaxial tests and also their numerical simulations were performed. As results of that, it was found that the proposed model can well describe cyclic behaviors of clay such as frequency dependent characteristics, and have the high feasibility of numerical simulation for dynamic analysis.

Analyses of Large Deformation Problems in Geotechnical Engineering using Particle Method (입자법을 이용한 지반공학 대변형 문제 해석)

  • Park, Sung-Sik
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1090-1094
    • /
    • 2009
  • Many problems in geotechnical engineering such as slop failure, debris flow, ground heaving due to embankment, and lateral flow caused by liquefaction are related to large deformation rather than small deformation. Traditional numerical methods such as finite element and finite difference methods have a difficulty to solve such large deformations because they use grids. A particle method was developed for fluid dynamics. The particle method can solve large deformation problems because it uses particles to discretize differential equations. It can also include soil constitutive model and thus solve soil behavior on various boundary conditions. In this study, a particle method, which is based on particles rather than grids, is introduced and used to simulate large deformation including soil failure. The developed method can be applied for various large deformation problems in geotechnical engineering because it incorporates soil constitutive models.

  • PDF

The Temperature Dependent C-H/V Constitutive Modeling for Magnesium Alloy Sheet (마그네슘 판재를 위한 온도 의존형 C-H/V 구성 모델에 관한 연구)

  • Park, J.H.;Lee, J.K.;Kim, H.Y.
    • Transactions of Materials Processing
    • /
    • v.21 no.4
    • /
    • pp.221-227
    • /
    • 2012
  • The automotive and electronic industries have seriously considered the use of magnesium alloys because of their excellent properties such as strength to weight ratio, EMI shielding capability, etc. However, it is difficult to form magnesium alloys at room temperature because of the mechanical deformation related to twinning. Hence, magnesium alloys are normally formed at elevated temperatures. In this study, a temperature dependent constitutive model, the C-H/V model, for the magnesium alloy AZ31B sheet is proposed. A hardening law based on nonlinear kinematic and H/V(Hollomon/Voce) hardening model is used to properly characterize the Bauschinger effect and the stabilization of the flow stress. Material parameters were determined from a series of uni-axial cyclic experiments(C-T-C) with the temperature ranging between 150 and $250^{\circ}C$. The developed models are fit to experimental data and a comparison is made.

Application of Field test to the Rate-dependent relation in Constitutive model (변형률속도-의존 구성모델의 현장 시험 적용)

  • Song, Young-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.2
    • /
    • pp.470-474
    • /
    • 2008
  • The rate-dependent constitutive model and the rate-independent model were analyzed for comparing with the piezocone penetration test and dissipation test. The mathematical expressions of the rate-dependent constitutive model were introduced, and the predictions using the both models were compared with the experimental results of in-situ field test. The rate-dependent model analysis gave better results than the rate-independent model analysis, that is appreciated since the process of the piezocone penetration and dissipation depends on the strain rate. Therefore, it is recommended the concept of the rate-dependent model for the prediction of soil behaviors using the field penetration test.

A Constitutive Model for Lightly Overconsolidated Clays (미약한 과압밀상태의 점토지반에 대한 구성모델)

  • 이승래;오세붕
    • Geotechnical Engineering
    • /
    • v.8 no.4
    • /
    • pp.17-30
    • /
    • 1992
  • Constitutive relations for lightly overconsolidated state of clayey soils. as well as normally consolidated state of those, play an important role in the analyses of geotechnical structures in clay deposits. For the practical point of view, a constitutive model applicable to lightly overconsolidated soils should be developed to easily evaluate the model parameters, and to precisely predict the various behavior of OC soils. For that purpose, a constitutive model for the lightly overconsolidated soil behavior has been proposed to rep- resent the undrained behavior which can be normalized using equivalent pressure, p. , Yielding within the initial yield surface is modeled exclusively using the given normally consolidated model parameters only. Furthermore, the proposed model can be applied to consider the effects of overconsolidation, secondary consolidation, and stress relaxation. The measured behavior in undrained triaxial tests has been Predicted easily and precisely in comparison with other models.

  • PDF

Comparison Study of Prediction Models for Hot Deformation Behavior of Tool Steel (공구강의 고온 변형 거동 예측을 위한 모델 비교 연구)

  • Kim, Keunhak;Park, Dongsung;Jun, Joong-Hwan;Lee, Min-Ha;Lee, Seok-Jae
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.4
    • /
    • pp.180-186
    • /
    • 2018
  • High temperature flow behaviors of Fe-Cr-Mo-V-W-C tool steel were investigated using isothermal compression tests on a Gleeble simulator. The compressive test temperature was varied from 850 to $1,150^{\circ}C$ with the strain rate ranges of 0.05 and $10s^{-1}$. The maximum height reduction was 45%. The dynamic softening related to the dynamic recrystallization was observed during hot deformation. The constitutive model based on Arrhenius-typed equation with the Zener-Hollomon parameter was proposed to simulate the hot deformation behavior of Fe-Cr-Mo-V-W-C steel. An artificial neural network (ANN) model was also developed to compare with the constitutive model. It was concluded that the ANN model showed more accurate prediction compared with the constitutive model for describing the hot compressive behavior of Fe-Cr-Mo-V-W-C steel.

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

A Study on the recently noted models for the geomaterials (지반재료에서 최근 주목받는 구성모델에 대한 연구)

  • Kim, Dae-Kyu;Kim, Min-Jeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.05a
    • /
    • pp.119-121
    • /
    • 2011
  • The proper selection and application of the constitutive model leads to successful prediction of the mechanical behavior for the geomaterials. Three models, which have been recently noted, were chosen and their contents have been briefly and conceptually described in this study.

  • PDF

Prediction of Compressive Behavior of FRP-Confined Concrete Based on the Three-Dimensional Constitutive Laws (3차원 구성관계를 고려한 FRP-구속 콘크리트의 압축거동 예측모델)

  • Cho Chang-Geun;Kwon Min-ho
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.4 s.82
    • /
    • pp.501-509
    • /
    • 2004
  • The proposed model can predict the compressive behaviors of concrete confined with fiber reinforced polymer (FRP) jacket. To model confining concrete by FRP jackets, the hypoelasticity-based constitutive law of concrete In tri-axial stress states has been presented. The increment of strength of concrete has been determined by the failure surface of concrete in tri-axial states, and its corresponding peak strain is computed by the strain enhancement factor that is proposed in the present study, Therefore, the newly proposed model is a load-dependent confinement model of concrete wrapped by FRP jackets to compare the previous models which are load-independent confinement models. The behavior of FRP jackets has been modeled using the mechanics of orthotropic laminated composite materials in two-dimension. The developed model is implemented into the incremental analysis of compressive tests. The verification study with several different experiments shows that the model is able to adequately capture the behavior of the compression test by including better estimations of the axial responses as well as the lateral response of FRP-confined concrete cylinders.