• Title/Summary/Keyword: Constitutive models

Search Result 390, Processing Time 0.02 seconds

Non Linear Viscoelastic Constitutive Relation of Elastomers for Hysteresis Behavior (히스테리시스 거동을 하는 탄성체의 비선형 점탄성 구성방정식)

  • Yoo, Sairom;Ju, Jaehyung;Choi, Seok-Ju;Kim, Dooman
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.353-362
    • /
    • 2016
  • An accurate hysteresis model of an elastomer is important for quantifying viscoelastic energy loss. We suggest a highly nonlinear hyper-viscoelastic constitutive model of elastomers. The model captures a nonlinear viscoelastic characteristic by combining Yeoh's hyperelastic model and Hoofatt's hysteresis model used Neo-Hookean hyperelastic model. Analytical and numerical models were generated from uniaxial cyclic tests of an elastomer under a sinusoidal load with a mean strain of 150%, amplitudes of 20~80%, and frequencies of 0.02~0.2Hz. The viscoelastic model can highly capture the viscoelastic energy loss up to a strain of 230%.

Half-dome Thermo-forming Tests of Thermoplastic Glass Fiber/PP Composites and FEM Simulations Based on Non-orthogonal Constitutive Models (열가소성 유리섬유/PP 복합재의 반구돔 열성형 평가 및 비직교 구성방정식을 이용한 FEM 수치해석)

  • Lee, Wonoh
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.236-242
    • /
    • 2016
  • In this work, tensile and in-plane shear tests for thermoplastic glass fiber/polypropylene composites were performed at a thermo-forming temperature and their properties were characterized and mathematically expressed by using the non-orthogonal constitutive model. As for the thermo-forming test, half-dome experiments were carried out by varying the usage of a releasing agent and the weight of holders. As results, the optimum final shape having well-aligned symmetry and no wrinkle formation was obtained when the releasing agent was used, and it was found that the careful control of a holding force is crucial to manufacture the healthy product. Furthermore, FEM simulations based on the non-orthogonal model showed similar final shapes and tendency of wrinkle formation with experimental results, and confirmed that wrinkles increase with less holding force and higher punch force is required under high frictional condition.

An elasto-plastic damage constitutive model for jointed rock mass with an application

  • Wang, Hanpeng;Li, Yong;Li, Shucai;Zhang, Qingsong;Liu, Jian
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.77-94
    • /
    • 2016
  • A forked tunnel, as a special complicated underground structure, is composed of big-arch tunnel, multi-arch tunnel, neighborhood tunnels and separate tunnels according to the different distances between two separate tunnels. Due to the complicated process of design and construction, surrounding jointed rock mass stability of the big-arch tunnel which belongs to the forked tunnel during excavation is a hot issue that needs special attentions. In this paper, an elasto-plastic damage constitutive model for jointed rock mass is proposed based on the coupling method considering elasto-plastic and damage theories, and the irreversible thermodynamics theory. Based on this elasto-plastic damage constitutive model, a three dimensional elasto-plastic damage finite element code (D-FEM) is implemented using Visual Fortran language, which can numerically simulate the whole excavation process of underground project and perform the structural stability of the surrounding rock mass. Comparing with a popular commercial computer code, three dimensional fast Lagrangian analysis of continua (FLAC3D), this D-FEM has advantages in terms of rapid computing process, element grouping function and providing more material models. After that, FLAC3D and D-FEM are simultaneously used to perform the structural stability analysis of the surrounding rock mass in the forked tunnel considering three different computing schemes. The final numerical results behave almost consistent using both FLAC3D and D-FEM. But from the point of numerically obtained damage softening areas, the numerical results obtained by D-FEM more closely approach the practical behaviors of in-situ surrounding rock mass.

Microplane Constitutive Model for Granite and Analysis of Its Behavior (마이크로플레인 모델을 이용한 화강암의 3차원 구성방정식 개발 및 암석거동 모사)

  • Zi Goangseup;Moon Sang-Mo;Lee In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.41-53
    • /
    • 2006
  • The brittle materials like rocks show complicated strain-softening behavior after the peak which is hard to model using the classical constitutive models based on the relation between strain and stress tensors. A kinematically constrained three-dimensional microplane constitutive model is developed for granite. The model is verified by fitting the experimented data of Westerly granite and Bonnet granite. The triaxial behavior of granite is well reproduced by the model as well as the uniaxial behavior. We studied the development of the fracture zone in granite during blasting impact using the model with the standard finite element method. All the results obtained from the microplane model developed are compared to those from the linear elasticity model which is commonly used in many researches and practices. It is found that the nonlinearity of rocks sigificantly affects the results of analysis.

Analytical Models for the Prediction of the Flexural Behavior for Thermal Bridge Breaker Systems embedded in Reinforced Concrete Slabs (열교차단장치가 적용된 철근 콘크리트 슬래브의 휨거동 예측을 위한 해석모델)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.325-333
    • /
    • 2015
  • Recently, thermal bridge breaker systems(TBBSs) applicable to RC slab-wall connections have been increasingly studied and proposed. This study also aims at proposing an analytic model which is applicable to predicting the flexural behavior of TBBS embedded in slabs from the initial elastic stages, yield states to ultimate conditions. The analytic models are developed by considering strain compatibility, force equilibrium and the constitutive law obtained from material test results. To verify the accuracy of the proposed analytic model, the moment-curvature relationship and change of neutral axis according to the loading states are compared with those of experimental results. Based on the comparison, it is verified that the proposed analytic model provides well predict the flexural behavior of TBBS embedded in slabs.

Reliability analysis of proposed capacity equation for predicting the behavior of steel-tube concrete columns confined with CFRP sheets

  • Raza, Ali;Khan, Qaiser uz Zaman;Ahmad, Afaq
    • Computers and Concrete
    • /
    • v.25 no.5
    • /
    • pp.383-400
    • /
    • 2020
  • Due to higher stiffness to weight, higher corrosion resistance, higher strength to weight ratios and good durability, concrete composite structures provide many advantages as compared with conventional materials. Thus, they have wide applications in the field of concrete construction. This research focuses on the structural behavior of steel-tube CFRP confined concrete (STCCC) columns under axial concentric loading. A nonlinear finite element analysis (NLFEA) model of STCCC columns was simulated using ABAQUS which was then, calibrated for different material and geometric models of concrete, steel tube and CFRP material using the experimental results from the literature. The comparative study of the NLFEA predictions and the experimental results indicated that the proposed constitutive NLFEA model can accurately predict the structural performance of STCCC columns. After the calibration of NLFEA model, an extensive parametric study was performed to examine the effects of different critical parameters of composite columns such as; (i) unconfined concrete strength, (ii) number of CFRP layers, (iii) thickness of steel tube and (iv) concrete core diameter, on the axial load capacity. Furthermore, a large database of axial strength of 700 confined concrete compression members was developed from the previous researches to give an analytical model that predicts the ultimate axial strength of composite columns accurately. The comparison of the predictions of the proposed analytical model was done with the predictions of 216 NLFEA models from the parametric study. A close agreement was represented by the predictions of the proposed constitutive NLFEA model and the analytical model.

Seismic loading response of piled systems on soft soils - Influence of the Rayleigh damping

  • Jimenez, Guillermo A. Lopez;Dias, Daniel;Jenck, Orianne
    • Geomechanics and Engineering
    • /
    • v.29 no.2
    • /
    • pp.155-170
    • /
    • 2022
  • An accurate analysis of structures supported on soft soils and subjected to seismic loading requires the consideration of the soil-foundation-structure interaction. An important aspect of this interaction lies with the energy dissipation due to soil material damping. Unlike advanced constitutive models that can induce energy loss, the use of simple elastoplastic constitutive models requires additional damping. The frequency dependent Rayleigh damping is a formulation that is frequently used in dynamic analysis. The main concern of this formulation is the correct selection of the target damping ratio and the frequency range where the response is frequency independent. The objective of this study is to investigate the effects of the Rayleigh damping parameters in soil-pile-structure and soil-inclusion-platform-structure systems in the presence of soft soil under seismic loading. Three-dimensional analyses of both systems are carried out using the finite difference software Flac3D. Different values of target damping ratios and minimum frequencies are utilized. Several earthquakes are used to study the influence of different excitation frequencies in the systems. The soil response in terms of accelerations, displacements and strains is obtained. For the rigid elements, the results are presented in terms of bending moments and normal forces. The results show that when the frequency of the input motion is close to the minimum (central) frequency in the Rayleigh damping formulation, the overdamping amount is reduced, and the surface spectral acceleration of the analyzed pile and inclusion systems increases. Thus, the bending moments and normal forces throughout the piles and inclusions also increase.

Nonlinear shear-flexure-interaction RC frame element on Winkler-Pasternak foundation

  • Suchart Limkatanyu;Worathep Sae-Long;Nattapong Damrongwiriyanupap;Piti Sukontasukkul;Thanongsak Imjai;Thanakorn Chompoorat;Chayanon Hansapinyo
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.69-84
    • /
    • 2023
  • This paper proposes a novel frame element on Winkler-Pasternak foundation for analysis of a non-ductile reinforced concrete (RC) member resting on foundation. These structural members represent flexural-shear critical members, which are commonly found in existing buildings designed and constructed with the old seismic design standards (inadequately detailed transverse reinforcement). As a result, these structures always experience shear failure or flexure-shear failure under seismic loading. To predict the characteristics of these non-ductile structures, efficient numerical models are required. Therefore, the novel frame element on Winkler-Pasternak foundation with inclusion of the shear-flexure interaction effect is developed in this study. The proposed model is derived within the framework of a displacement-based formulation and fiber section model under Timoshenko beam theory. Uniaxial nonlinear material constitutive models are employed to represent the characteristics of non-ductile RC frame and the underlying foundation. The shear-flexure interaction effect is expressed within the shear constitutive model based on the UCSD shear-strength model as demonstrated in this paper. From several features of the presented model, the proposed model is simple but able to capture several salient characteristics of the non-ductile RC frame resting on foundation, such as failure behavior, soil-structure interaction, and shear-flexure interaction. This confirms through two numerical simulations.

Investigation of load transfer along interfaces of jacketed square columns

  • Achillopoulou, Dimitra V.
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.293-302
    • /
    • 2017
  • This study deals with a numerical investigation of load transfer along interfaces of jacketed columns using finite element models. Appropriate plasticity and constitutive models are used to simulate the response of concrete and steel bars. Experimental data were used to calibrate the simulation of mechanical characteristics. The different compressive strength of core and jacket concrete, the confinement ratio, the dowels' diameter size and the load pattern shapes were considered. The path diagrams along the interfaces elucidate the areas around the dowel bars where due to stress concentration plastic hinges and intense discontinuities are created. The stress flow also depicts the contribution of confinement of the jacketed area to the overall resonant load capacity of the core column. The scope of the research is to identify and quantify the shear transfer along the interfaces of strengthened elements.

Analysis for Fracture Characteristics of Porous Materials by using Cohesive Zone Models (응집영역모델을 이용한 다공질 재료의 파괴 거동 연구)

  • Choi, Seung-Hyun;Ha, Sang-Yul;Kim, Ki-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.6
    • /
    • pp.552-559
    • /
    • 2009
  • The effect of porosity on the crack propagation is studied by using the cohesive zone model. Standard mode I fracture test were done by using compact tension specimens with various porosities. Load-load line displacement curves and ${\delta}_5$-crack resistance curves for various porosities were obtained from experiments. The cohesive zone model proposed by Xu and Needleman was employed to describe the crack propagation in porous media, and the Gurson model is used for constitutive relation of porous materials. These models were implemented into user subroutines of a finite element program ABAQUS. The fracture mode changes from ductile fracture to brittle fracture as the porosity increases. Numerical calculations agree well with experimental results.