• 제목/요약/키워드: Constitutive

검색결과 2,146건 처리시간 0.028초

비등방경화 구성모델을 이용한 대변형 해석 : I. 정식화 (Large Deformation Analysis Using and Anistropic Hardening Constitutive Model : I. Formulation)

  • 오세붕
    • 한국지반공학회논문집
    • /
    • 제18권4호
    • /
    • pp.207-214
    • /
    • 2002
  • 미소변형에서 대변형에 이르는 전체 변형도 영역의 구성모델을 ABAQUS 코드에 구현하였다. 구성모델은 비등방경화규칙에 근거한 전응력 개념의 탄소성 모델이다. 사용된 정식화 및 알고리즘은 (1) Jaumann 응력속도를 이용한 대변형도 조건 정식화 (2) 내재적 인 응력적분 (3) 일관된 접선계수를 포함하고 있다. 이를 통하여 비등방경화 구성관계를 적용한 대변형 해석을 정확하고 효율적으로 수행할 수 있는 토대를 구축하였다. 동반논문(전병곤 등, 2002)에서는 예제해석을 통하여 새로운 구성모델과 ABAQUS 코드를 이용한 대변형 해석결과를 기술하였다.

Identification of isotropic and orthotropic constitutive parameters by FEA-free energy-based inverse characterization method

  • Shang, Shen;Yun, Gun Jin;Kunchum, Shilpa;Carletta, Joan
    • Structural Engineering and Mechanics
    • /
    • 제45권4호
    • /
    • pp.471-494
    • /
    • 2013
  • In this paper, identification of isotropic and orthotropic linear elastic material constitutive parameters has been demonstrated by a FEA-free energy-based inverse analysis method. An important feature of the proposed method is that it requires no finite element (FE) simulation of the tested material. Full-field displacements calculated using digital image correlation (DIC) are used to compute DIC stress fields enforcing the equilibrium condition and DIC strain fields using interpolation functions. Boundary tractions and displacements are implicitly recast into an objective function that measures the energy residual of external work and internal elastic strain energy. The energy conservation principle states that the residual should be zero, and so minimizing this objective function inversely identifies the constitutive parameters. Synthetic data from simulated testing of isotropic materials and orthotropic composite materials under 2D plane stress conditions are used for verification of the proposed method. When identifying the constitutive parameters, it is beneficial to apply loadings in multiple directions, and in ways that create non-uniform stress distributions. The sensitivity of the parameter identification method to noise in both the measured full-field DIC displacements and loadings has been investigated.

Inelastic Constitutive Modeling for Viscoplastcity Using Neural Networks

  • Lee, Joon-Seong;Lee, Yang-Chang;Furukawa, Tomonari
    • 한국지능시스템학회논문지
    • /
    • 제15권2호
    • /
    • pp.251-256
    • /
    • 2005
  • Up to now, a number of models have been proposed and discussed to describe a wide range of inelastic behaviors of materials. The fetal problem of using such models is however the existence of model errors, and the problem remains inevitably as far as a material model is written explicitly. In this paper, the authors define the implicit constitutive model and propose an implicit viscoplastic constitutive model using neural networks. In their modeling, inelastic material behaviors are generalized in a state space representation and the state space form is constructed by a neural network using input output data sets. A technique to extract the input-output data from experimental data is also described. The proposed model was first generated from pseudo-experimental data created by one of the widely used constitutive models and was found to replace the model well. Then, having been tested with the actual experimental data, the proposed model resulted in a negligible amount of model errors indicating its superiority to all the existing explicit models in accuracy.

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

A Comparative Study on Arrhenius-Type Constitutive Models with Regression Methods

  • Lee, Kyunghoon;Murugesan, Mohanraj;Lee, Seung-Min;Kang, Beom-Soo
    • 소성∙가공
    • /
    • 제26권1호
    • /
    • pp.18-27
    • /
    • 2017
  • A comparative study was performed on strain-compensated Arrhenius-type constitutive models established with two regression methods: polynomial regression and regression Kriging. For measurements at high temperatures, experimental data of 70Cr3Mo steel were adopted from previous research. An Arrhenius-type constitutive model necessitates strain compensation for material constants to account for strain effect. To associate the material constants with strain, we first evaluated them at a set of discrete strains, then capitalized on surrogate modeling to represent the material constants as a function of strain. As a result, disparate flow stress models were formed via the two different regression methods. The constructed constitutive models were examined systematically against measured flow stresses by validation methods. The predicted material constants were found to be quite accurate compared to the actual material constants. However, notable mismatches between measured and predicted flow stresses were revealed by the proposed validation techniques, which carry out validation with not the entire, but a single tensile test case.

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • 제13권1호
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF

선박 및 해양구조물용 극저온 재료의 온도 및 변형률 속도 의존 통합 구성방정식 개발 (Development of Temperature and Strain-Rate Dependent Unified Constitutive Equation for Ships and Offshore Structures)

  • 박웅섭;김정현;전민성;이제명
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.200-206
    • /
    • 2011
  • The mechanical properties of the most widely used cryogenic materials, i.e. austenitic stainless steel (ASS), aluminum alloy and invar steel, strongly depend on temperatures and strain rates. These phenomena show very complicated non-linear behaviors and cannot be expressed by general constitutive equation. In this study, an unified constitutive equation was proposed to represent the effect of temperature and strain rate on the materials. The proposed constitutive equation has been based on Tomita/Iwamoto and Bodner/Partom model for the expression of 2nd hardening due to martensite phase transformation of ASS. To simulate ductile fracture, modified Bodner/Chan damage model was additionally applied to the model and the model validity was verified by comparison of experimental and simulation results.

Application of steel equivalent constitutive model for predicting seismic behavior of steel frame

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1055-1075
    • /
    • 2015
  • In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

Formulation of the Neural Network for Implicit Constitutive Model (I) : Application to Implicit Vioscoplastic Model

  • Lee, Joon-Seong;Lee, Ho-Jeong;Furukawa, Tomonari
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권3호
    • /
    • pp.191-197
    • /
    • 2009
  • Up to now, a number of models have been proposed and discussed to describe a wide range of inelastic behaviors of materials. The fatal problem of using such models is however the existence of model errors, and the problem remains inevitably as far as a material model is written explicitly. In this paper, the authors define the implicit constitutive model and propose an implicit viscoplastic constitutive model using neural networks. In their modeling, inelastic material behaviors are generalized in a state space representation and the state space form is constructed by a neural network using input-output data sets. A technique to extract the input-output data from experimental data is also described. The proposed model was first generated from pseudo-experimental data created by one of the widely used constitutive models and was found to replace the model well. Then, having been tested with the actual experimental data, the proposed model resulted in a negligible amount of model errors indicating its superiority to all the existing explicit models in accuracy.

손상이 증가하는 아스팔트 콘크리트의 점탄성 구성모델 (Constitutive Modeling of Asphalt Concrete with Time-Dependent Damage Growth)

  • 이현종
    • 전산구조공학
    • /
    • 제10권4호
    • /
    • pp.229-238
    • /
    • 1997
  • 본 논문에서는 반복하중에 의해 손상을 입은 아스팔트 콘크리트의 점탄성 구성모델에 대한 역학적 접근방법을 제시하였다. 모의변수로 나타낸 탄성-점탄성 일치원리는 아스팔트 콘크리트의 점탄성과 시간의존 손상의 증가를 별도로 평가하도록 적용되었다. 선형-점탄성 파괴역학에 사용되고 있는 미소균열의 증가법칙이 물체내 손상증가를 나타내는데 성공적으로 사용되었다. 응력과 모의변형도로 나타나는 구성방정식은 먼저 변형도조절에 대해 세워졌으며, 응력과 모의변형도를 모의응력과 변형도로 간단하게 대체함으로써 응력조절 구성방정식으로 변형되었다. 모의응력으로 나타낸 변형된 구성방정식은 응력조절모드에서 파괴에 이르는 아스팔트 콘크리트의 모든 역학적 거동을 충분히 예측하고 있다.

  • PDF