• Title/Summary/Keyword: Constant-speed torque constant

Search Result 220, Processing Time 0.026 seconds

Investigation on Characteristics of the Baseline Controller for NREL 5 MW Wind Turbine (NREL 5 MW 풍력발전기의 기본 제어기에 대한 특성 고찰)

  • Kim, Jong-Hwa;Moon, Seok-Jun;Shin, Yun-Ho;Won, Moon-Chul
    • Journal of Wind Energy
    • /
    • v.3 no.2
    • /
    • pp.34-41
    • /
    • 2012
  • The paper is focusing on investigating the control characteristics of the baseline controller of 5 MW wind turbine provided by NREL(National Renewable Energy Laboratory). The baseline controller consist of two control logics, a maximum power tracking control below the rated wind speed and a constant power control above the rated wind speed. In the low wind speed, the mean generator power for changing the turbulent intensity and the optimal constant is studied through numerical simulations using FAST program. On the other hand, the constant power control logic and the constant control logic are compared in the high wind speed. It is confirmed that optimal constant is closely related to the turbulent intensity in low wind speed region and the constant torque control has better performance than the constant power control with respect to mechanical load in high wind speed region.

Performance Analysis of the Eddy Current Braker with Multi-layer Rotor Considering Constant Braking Torque

  • Kim, Cherl-Jin;Lee, Kwan-Yong;Han, Kyoung-Hee;Beak, Soo-Hyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.4B no.2
    • /
    • pp.59-64
    • /
    • 2004
  • Study of an accurate and robust braking control method is required as a technical improvement to the servo system. In particular, the braker exhibiting constant braking performance under speed variation conditions of the prime mover needs to be investigated. In this paper, the braking torque of the eddy current braker between the electromagnet stator and rotating disk is analyzed. The torque-speed characteristics and accurate disk construction are represented. From the computer simulation results, it was found that eddy current braking torque is linear or approximately constant over the desired speed range depending on the rotor material, disk construction, pole number and pole displacement of the stator. These relations are confirmed by experimental results.

A Study On the Design and Constant Torque Control of the Eddy Current Brake For a High-speed Railway Train (고속전철용 와전류제동장치의 설계 및 정토크 제어에 관한 연구)

  • Ryu, Hong-Je;Gang, Gyeong-Ho;U, Myeong-Ho;Kim, Jong-Su;Gang, Do-Hyeon;Im, Geun-Hui
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.611-616
    • /
    • 1999
  • The introduction of the eddy current braking(ECB) system in HSRT(high speed railway train) is known to be advantageous, in that the system is independent on wheel-rail adhesion coefficient which is greatly affected by weather condition. It also minimize the maintenance of the brake system and does not require any additional electric energy because it is powered form the regenerated power at the time of the braking. In this study, the braking and attraction forces of the ECB are simulated by 2-D FEM and are experimentally verified on a down-scaled prototype. A control algorithm of the ECB is proposed to generate constant braking torque using linear variation of the reference current according to speed. Experimental results shows that the constant torque is generated over all operating speed region by developed control algorithm.

  • PDF

Speed Control of an Overcentered Variable-Displacement Hydraulic Motor on a Constant Pressure Network (일정 압력원에 연결된 가변유압모터의 속도제어)

  • 김철수;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.272-276
    • /
    • 1996
  • This study deals with the speed control of an overcentered variable-displacement hydraulic motor on a constant pressure network, which is noted for its high system efficiency fast dynamic response and energy recovery capability. The speed control characteristics of the conventional cascade PI controller are largely affected by load-torque disturbances. To obtain robust speed control despite torque disturbances, the load torque is estimated by an observer based on a mathematical model and compensated for by a feedforward loop. It is shown by experiment that robust speed control may be obtained with the proposed controller. The experimental data agree fairly well with the theoretical analysis.

  • PDF

Direct Torque Control Method of Induction Machine with Constant Average Torque (일정한 토크 평균치를 가지는 유도전동기 직접토크제어기법)

  • Kim, Jeong-Ok;Jo, Nae-Su;Choe, Byeong-Tae;Kim, U-Hyeon;Im, Seong-Un;Gwon, U-Hyeon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.31-34
    • /
    • 2003
  • There are several types of switching table for selection voltage vector in direct torque control of induction motor. In general, two-quadrant and four-quadrant operation switching table are used mostly. Two-quadrant operation has an advantage that reduced the torque ripples in comparison with four-quadrant operation, but it has the defect that is not constant average torque. Because the torque increasing slope size by non-zero voltage vector is different from the torque decreasing slope size by zero voltage vector as speed region. The main objective of this study is to maintain constant average torque using two-quadrant operation switching table. In proposed method, the torque increasing slope or decreasing slope are calculated before selected voltage vector is applied. Then, it is applied to zero voltage vector or non-zero voltage vector until the torque increasing slope and decreasing slope are equal. In total magnitude. Therefore it becomes to maintain average torque at whole operation speed. The validity of the proposed method is proven by simulated and experimental results.

  • PDF

Parameter Estimation for Step Motor using RLS Algorithm (RLS알고리즘을 이용한 스텝 모터의 파라미터 추정)

  • Yon, Tae-Jun;Kim, Dong-Min
    • Proceedings of the KIEE Conference
    • /
    • 1999.07b
    • /
    • pp.785-787
    • /
    • 1999
  • In this paper, recursive least square algorithm is presented to estimate the parameters of step motor under low-speed operation. Parameter estimation is important for compensating the input current by calculating the ratio of the motor torque constant and detent torque constant that causes torque-ripple in low-speed applications. On-line parameter estimation process is a preliminary procedure to apply step motor to adaptive control. Computer simulation shows that the estimated parameters converge in finite time.

  • PDF

Study of Maximum Torque Operation of Interior Permanent Magnet Synchronous Motor in Constant Torque Region (매입형 영구자석 동기전동기의 일정 토크 영역에서 최대 토오크 운전에 관한 연구)

  • Kim, Jang-Mok;Kim, Su-Yeol;Ryu, Ho-Seon;Im, Ik-Hun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.3
    • /
    • pp.195-203
    • /
    • 2000
  • In this paper a new controller is proposed to operate the interior permanent magnet synchronous motor(IPMSM) by the control method of the maximum torque per ampere in constant torque region. The implementation method of the conventional torque controller is explained and analyzed exactly. The proposed controller does not use the torque and q-axis current of the speed controller but the amplitude of the stator current in order to utilize not only the magnetic alignment torque but also the reluctance in the constant region, gurantees the linearity of the torque, and is easily implemented. These attractive are verified through the experiment.

  • PDF

Investigation of a Speed Control for a Wind Turbin Systsem (풍력발전시스템 속도제어의 실험적 고찰)

  • 임종환;최민호;허종철;김건훈
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.36-36
    • /
    • 2000
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is non-linear function of a wind speed, angular velocity, and pitch angle of the blade. The design of a cor_troller, in general, is performed by linearizing the torque in the vicinity of a operating point assuming the angular velocity of the blade is constant. For speed control, however, the angular velocity is no longer a constant, so that linearization of the torque in terms of a wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the non-linear torque model of the blade. The validity of the algorithm is demonstrated with the results produced through sets of experiments.

  • PDF

Speed Control of a Wind Turbine System Based on Pitch Control (피치제어형 풍력발전시스템의 속도제어)

  • Lim, Jong-Hwan;Huh, Jong-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2001
  • The paper presents a speed control algorithm for a full pitch-controlled wind turbine system. Torque of a blade generated by wind energy is a nonlinear function of wind speed, angular velocity, and pitch angle of the blade. The design of the controller, in general, is performed by linearizing the torque in the vicinity of the operating point assuming the angular velocity of the blade is constant. For speed control, however the angular velocity is on longer a constant, so that linearization of the torque in terms of wind speed and pitch angle is impossible. In this study, a reference pitch model is derived in terms of a wind speed, angular velocity, and pitch angle, which makes it possible to design a controller without linearizing the nonlinear torque model of the blade. This paper also suggests a method of designing a hydraulic control system for changing the pitch angle of the blade.

  • PDF