• Title/Summary/Keyword: Constant-size ciphertext

Search Result 12, Processing Time 0.017 seconds

Data access control of KP-ABE scheme for secure communication in drone environment

  • Hwang, Yong-Woon;Kim, Su-Hyun;Lee, Im-Yeong
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.4
    • /
    • pp.53-60
    • /
    • 2022
  • Recently, as the amount of data collected by drones has rapidly increased, it is necessary to support cloud computing technology that can securely and efficiently store and process data. However, various security threats such as stealing, leaking, or tampering with data communicated by drones can occur due to attackers. Therefore, there is a need for security technology to provide secure communication of data collected from drones. Among various security technologies, the KP-ABE scheme, which is attribute-based encryption, is a security technology that satisfies two characteristics: data encryption and user access control. This paper researched the KP-ABE scheme and proposed a secure data access control scheme to the drone environment. This proposed scheme provides confidentiality and integrity of data communicated in a drone environment and secure access control and availability. In addition, it provides a fast ciphertext search and constant size ciphertext among the requirements to be provided in the KP-ABE scheme.

Two Attribute-based Broadcast Encryption Algorithms based on the Binary Tree (이진트리 기반의 속성기반 암호전송 알고리즘)

  • Lee, Moon Sik;Kim, HongTae;Hong, Jeoung Dae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.358-363
    • /
    • 2014
  • In this paper, we present two constructions of the attribute-based broadcast encryption(ABBE) algorithm. Attribute-based encryption(ABE) algorithm enables an access control mechanism over encrypted data by specifying access policies among private keys and ciphertexts. ABBE algorithm can be used to construct ABE algorithm with revocation mechanism. Revocation has a useful property that revocation can be done without affecting any non-revoked uers. The main difference between our algorithm and the classical ones derived from the complete subtree paradigm which is apt for military hierarchy. Our algorithm improve the efficiency from the previously best ABBE algorithm, in particular, our algorithm allows one to select or revoke users by sending ciphertext of constant size with respect to the number of attributes and by storing logarithm secret key size of the number of users. Therefore, our algorithm can be an option to applications where computation cost is a top priority and can be applied to military technologies in the near future.