• 제목/요약/키워드: Constant strain rate

검색결과 243건 처리시간 0.029초

일정변형률(CRS) 시험에서의 압밀특성 (Consolidation Characteristics at the Constant Rate of Strain(CRS) Test)

  • 이달원;김시중
    • 농업과학연구
    • /
    • 제37권3호
    • /
    • pp.491-499
    • /
    • 2010
  • This study was carried out to investigate the consolidation characteristics of the remolded clay by the oedometer and the constant rate of strain(CRS) consolidation tests. As the rate of strain increases, the settlement rapidly decreased. As the ratio of the sand in the specimen increases, its effect on the rate of strain to the settlement was reduced. As the effective stress increased, the void ratio decreased, while the rate of strain increased, it did not show a clear variation. The reduction of the void ratio was shown to be less than the oedometer test. The coefficient of vertical consolidation with effective stress showed very large variation around preconsolidation stress, but the rate of strain did not provide significant effects. The rate of strain with effective stress gradually decreased at all tests and mixed ratio of sand. The rate of strain at the constant rate of strain tests showed smaller than in the oedometer test. The coefficient of consolidation at the constant rate of strain tests showed much more increase than in the oedometer test. The ratio of the vertical coefficient of consolidation by the odometer and the constant rate of strain tests showed a large difference according to various tests method and mixing ratio. Therefore, it is recommended that careful attention should be paid to designing the soft ground improvement.

CRS 압밀시험에 의한 점성토의 팽창특성에 관한 연구 (The Swelling Characteristics of Clayey Soil by CRS Consolidation Test)

  • 이응준;한상재;김지용;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.335-342
    • /
    • 2000
  • In this study, the swelling characteristics of reconstituted clayey soil were investigated by STD and CRS test. The strain rate during loading was constant i.e. 0.05 %/min, 0.03 %/min and during unloading was varied in proportion to 1/1, 1/5, 1/10 and 1/15 of strain rate during loading. From this study the following conclusions were obtained; (1) There were similar values, especially, during unloading in case of 1/10 or 1/15 of strain rate during loading and the test results between STD and CRS were much to be alike. (2) The cross point of effective stress versus excess pore water pressure ratio curve, was increased during unloading, while the stress level of the cross point was decreased. The stress level can be separated into two zones according to the swelling index named Cs1 and Cs2. From the test results, the values of Cs1 were approximately constant irrespective of strain rate during unloading, but the values of Cs2 were much influenced by strain rate. (3) In CRS consolidation tests, it was found that unloading strain rate did not affect on the existence of zone.

  • PDF

Interpretation of coefficient of consolidation from CRS test results

  • Jia, Rui;Chai, Jinchun;Hino, Takenori
    • Geomechanics and Engineering
    • /
    • 제5권1호
    • /
    • pp.57-70
    • /
    • 2013
  • Constant rate of strain (CRS) consolidation tests were conducted for undisturbed Ariake clay samples from three boreholes in Saga Plain of Kyushu Island, Japan. The coefficients of consolidation ($c_{\nu}$) were interpreted from the CRS test results by small- and large-strain theory. Large-strain theory was found to interpret smaller $c_{\nu}$ values and less strain rate effect on $c_{\nu}$ than that by small-strain theory. Comparing the theoretical strain distributions within a soil specimen to those obtained by numerical simulation shows that the small-strain theory can be used only for the dimensionless parameter $c_{\nu}/\dot{\varepsilon}H_0^2{\geq}50$ (where $\dot{\varepsilon}$ is strain rate and $H_0$ is the specimen height), and the large-strain theory can be used for a larger range of strain rates. Applying the criterion to undisturbed Ariake clay with a $c_{\nu}$ value of about $1{\times}10^{-7}\;m^2/s$, it is suggested that the large-strain theory should be adopted for calculating the $c_{\nu}$ value when $\dot{\varepsilon}$ > 0.03%/min.

원뿔형 금형을 이용한 초소성 변형 특성 평가 (Characterization of Superplasticity Using Cone-Type Bulge Test)

  • 권용남;이승진;이영선;이호성;이정환
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2004년도 추계학술대회논문집
    • /
    • pp.180-183
    • /
    • 2004
  • Superplastic formability depends on flow parameters such as temperature, strain rate, strain and stress, microstructures. Usually, superplastic properties of materials are characterized with using a uni-axial tension testing. However, superplastic sheet is formed under mutiaxial loading condition in most forming practices. In the present study, superplastic characteristics of A15083 alloys were determined with using both a uni-axial and biaxial bulging tests. Specially, cone-type die was used to achieve constant strain rate under constant pressure condition. Even though constant strain rate under a certain pressure was achieved only approximately, a cone-type bulging test was found to be quite beneficial to get a multiaxial formability of superplastic materials.

  • PDF

제하-재재하 시 CRS 압밀 시험의 최적 변형률 속도 (Optimal Strain Rate of Unloading-Reloading Cycle in Constant Rate of Strain Consoildation Test)

  • 박가현;윤찬영;정충기
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.1156-1167
    • /
    • 2010
  • The constant rate of strain (CRS) consolidation test has been widely used to evaluate consolidation characteristics of soils instead of the standard Incremental Loading Test. In practical problems, after the ground improvement, the condition of the soil is over-consolidated. Therefore, it is important to determine the recompression indices and the coefficient of consolidation(or the coefficient of swelling) of unloading-reloading cycle to predict the settlement behavior. However, since standard testing procedures or studies related with strain rate are insufficient especially in unloading-reloading cycle, it is difficult to predict the settlement field behavior accurately from the CRS consolidation test results in spite of its lots of strengths. The several CRS consolidation tests were performed changing the unloading strain rate from 0.2%/hr to 20%/hr with vertical drainage condition using the reconstituted kaolinite sample. For the reconstituted kaolinite sample in CRS consolidation test, the recompression indices are insensitive to the strain rate. It is revealed that the coefficient of consolidation of reloading is affected by the developed pore pressure during unloading. Additionally, the test should be conducted in the positive pore pressure ratio range (3~15%) to obtain the reasonable coefficient of consolidation in the whole range(loading, unloading and reloading).

  • PDF

변형율에 따른 AZ31 합금의 변형율 속도 민감도 지수 변화와 미세조직 특성에 관한 연구 (The Study of the Variation of Strain Rate Sensitivity Index depending on the Strain and Microstructural Observations of AZ31 Mg Alloy Sheet)

  • 김동옥;강찬우;이수연
    • 소성∙가공
    • /
    • 제20권7호
    • /
    • pp.498-503
    • /
    • 2011
  • The strain rate sensitivity index, m, plays an important role in plastic deformation at elevated temperatures. It is affected by strain rate, temperature, and the microstructure of the material. The strain rate sensitivity index has been used as a constant in numerical analysis of plastic forming at a specified strain rate and temperature. However, the value of m varies as deformation proceeds at an elevated temperature and a certain strain rate. Thus, in this present study, the value of m has been characterized as a function of strain by multiple tensile jump tests for AZ31 magnesium alloy sheet, and the variation of m has been discussed in conjunction with the microstructural observations before and after deformation. The experimental results show that the variation of m is dependent on the temperature and strain rate. Grain growth with dynamic recrystallization also affects the variation of m.

Determination of plastic concrete behavior at different strain rates to determine Cowper-Symonds constant for numerical modeling

  • Nateghi, Reza;Goshtasbi, Kamran;Nejati, Hamid Reza
    • Computers and Concrete
    • /
    • 제26권3호
    • /
    • pp.227-237
    • /
    • 2020
  • Strain rate investigations are needed to calibrate strain-rate-dependent material models and numerical codes. An appropriate material model, which considers the rate effects, need to be used for proper numerical modeling. The plastic concrete cut-off wall is a special underground structure that acts as a barrier to stop or reduce the groundwater flow. These structures might be subjected to different dynamic loads, especially earthquake. Deformability of a structure subjected to dynamic loads is a principal issue which need to be undertaken during the design phase of these structures. The characterization of plastic concrete behavior under different strain rates is essential for proper designing of cut-off walls subjected to dynamic loads. The Cowper-Symonds model, as one of the most commonly applied material models, complies well with the behavior of a plastic concretes in low to moderate strain rates and will be useful in explicit dynamics simulations. This paper aims to present the results of an experimental study on mechanical responses of one of the most useful types of plastic concrete and Cowper-Symonds constant determination procedures in a wide range of strain rate from 0.0005 to 107 (1/s). For this purpose, SHPB, uniaxial, and triaxial compression tests were done on plastic concrete samples. Based on the results of quasi-static and dynamic tests, the dynamic increase factors (DIF) of this material in different strain rates and stress state conditions were determined for calibration of the Cowper - Symonds material models.

일정변형률 압밀시험에 따른 이암풍화토의 압밀특성 (A Consolidation Characteristics of Decomposed Mudstone Soil by Constant Rate of Strain Consolidation)

  • 김영수;김기영;김대만
    • 한국지반공학회논문집
    • /
    • 제16권1호
    • /
    • pp.99-106
    • /
    • 2000
  • 기존의 Oedometer 시험은 간단한 시험장치의 편리함으로 인해 널리 이용되어 왔다. 그러나 이 방법은 장시간의 시험기간, 각 단계 하중에서의 불규칙적인 응력상태, 매우 연약한 점토에 대한 시험의 어려움 및 시료의 포화문제와 같은 여러 문제점을 노출하게 되었다. 따라서 이런 단점을 보완 할 수 있는 시험 방법의 하나로 일정 변형률 압밀시험 이 개발되어 널리 이용되고 있다. 본 논문에서는 세가지 변형률을 이용한 CRS시험을 실시하였으며, 이 결과를 수정된 Wissa(1971)의 비선형 이론을 이용해 해석하고, 기존의 Oedometer시험 및 직접투수시험과 비교분석함으로서 CRS시험의 효율성 및 적용성 유무를 판단하고자 한다.

  • PDF