• Title/Summary/Keyword: Constant power loads

Search Result 108, Processing Time 0.028 seconds

SHAPE MEMORY THIN FILM OF TITANIUM-NICKEL FOR MICROACTUATOR FORMED BY SPUTTERING

  • Takei, A.;Ishida, A.
    • Journal of the Korean institute of surface engineering
    • /
    • v.29 no.5
    • /
    • pp.424-429
    • /
    • 1996
  • Thin films of Ti-Ni alloy were formed by sputtering under various Ar gas pressures and r. f. powers to investigate the optimum sputtering conditions and to demonstrate their shape memory effect. The composition and structure of the films were examined by electron micro-probe analysis and scanning electron microscope. These films were annealed in order to crystallize them. The mechanical property of the annealed films was evaluated by a conventional bending test. The transformation tmeperatures were determined by differential scanning calorimetry. The shape memory behaviour was examined quantiatatively by changing in sample temperature under various constant loads. It was found that the Ar gas pressure had a critical effect on the mechanical property of the thin film,s although the r.f. power also affected it. The films formed at a high Ar gas pressure were too brittle to be bent successfully. However, the films formed at a low Ar gas pressur could be bent and their shape memory behavior was found to be comparable with that of bulk Ti-Ni alloys.

  • PDF

The study on the characteristics of operating limit of low voltage electric machine under the effects of voltage quality (전압품질이 저압 전기기기 운전에 미치는 특성연구)

  • Park, In-Deok;Lee, Geun-Joon
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.33-35
    • /
    • 2007
  • This paper studies on operating limit curve of low voltage electric machinery with respect to source voltage variation or sag. Also, it discusses electric machine and compensation equipment design methodology based on voltage quality effect assessment technology. Voltage quality standards, such as SEMI47, CBEMA, ITIC curve are regarded to examine the relation between time constants of load and sagging time of sag generator, the load(low voltage electric machinery) study. Voltage sag characteristics of loads, time constant and sag relation voltage-time operating limits are tested and verified.

  • PDF

A Feasibility Study of Seismic Isolation for Wolsong Reactor Building

  • Kim, Kang-Soo;Kim, Tae-Wan;Lee, Jeong-Yoon
    • Nuclear Engineering and Technology
    • /
    • v.30 no.2
    • /
    • pp.83-90
    • /
    • 1998
  • To predict effects of seismic isolation, seismic isolation bearings were applied to the Wolsong reactor building and the analytical study was performed. For this study, the Wolsong reactor building was modeled using lumped masses and beam elements. Design Basis Earthquake with a ground acceleration of 0.2g was applied. And then, the behavior of the isolated structure was compared with that of the unisolated structure. The horizontal response acceleration at the top of the unisolated reactor building was 0.99g, while that of the isolated one was 0.14g(15% damping) and the acceleration response along the height of the structure was constant. The maximum displacement of the unisolated structure was 8.3mm, while that of the isolated structure was 66mm. The application of isolation bearings on the reactor building reduces seismic loads but increases the displacement of the structure on a large scale. Therefore, when using isolation bearings, the reactor building and BOP should be located on a common mat to cover the large displcement.

  • PDF

Creep Damage Evaluation of High-Temperature Pipeline in Power Plant by Using Ultrasonic Velocity Measurement and Hardness Test (초음파 음속 및 경도법에 의한 발전소 고온배관재의 크리프 손상평가)

  • Hur, Kwang-Beom;Yoo, Keun-Bong;Cho, Yong-Sang;Lee, Sang-Guk
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3 s.33
    • /
    • pp.92-99
    • /
    • 1999
  • High temperature and pressure materials in power plant are degraded by creep damage, if they are exposed to constant loads for long times, which occurs in load bearing structures of pressurized components operationg at elevated temperatures. Many conventional measurement techniques such as replica method, electric resistance method, and hardness test method for measuring creep damgage have been used. So far, the replica method is mainly used for the inspection of high temperature and pressure components. This technique is, however, restricted to applications at the surface of the testpieces and cannot be used to material inside. In this paper, ultrasonic evaluation for the detection of creep damage in the form of cavaties on grain boundaries or intergranular microcracks were carried out. And the absolute measuring method of quantitative ultrasonic velocity technique for Cr-Mo material degradation was analyzed. As a result of ultrasonic tests for crept for specimens, we founded that the sound velocity was decreased as increase of creep life fraction(${phi}c$) and also, confirmed that hardness was decreased as increase of creep life fraction(${phi}c$).

  • PDF

Modeling for Utility Interactive Photovoltaic Power Generation System using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 태양광 발전시스템의 배전계통 연계운전을 위한 모델링)

  • Kim, Woo-Hyun;Kang, Min-Kyu;Kim, Eung-Sang;Kim, Ji-Won;Ro, Byong-Kwon;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 1999.07c
    • /
    • pp.1180-1182
    • /
    • 1999
  • Modeling for utility interactive photovoltaic power generation system has been studied using PSCAD/EMTDC. The proposed model system consists of a simple utility circuit configuration, 3kW of single phase utility interactive photovoltaic system, single phase PWM voltage source inverter module, and feed forward PID controller as control circuit. In the system, the DC current is assumed constant, and the voltage source inverter provides sinusoidal ac current for the loads of utility system. The simulation results are given in order to verify the effectiveness of the proposed model. The phases of output voltage of utility system and the output current of the inverter module are compared. Especially, the compensation effect of the photovoltaic system for the unbalanced load is analyzed. and the transient phenomena for a phase to ground fault are also simulated.

  • PDF

Performance Comparison of Hot-gas Bypass Types with the Variation of Refrigeration Load (부하변화에 따른 hot-gas 바이패스 방식별 성능 비교)

  • Baek, Seung-Moon;Yoon, Jung-In;Son, Chang-Hyo;Heo, Jung-Ho
    • Journal of Power System Engineering
    • /
    • v.18 no.5
    • /
    • pp.48-54
    • /
    • 2014
  • In this paper, three refrigeration systems bypassing hot-gas to compressor outlet, compressor and condenser outlet and evaporator inlet are theoretically compared to offer basic design data for performance depending on cooling load using a HYSYS program. The main results are summarized as follows : First, the COP of third system is the highest. Next, the COP of second system is higher than first one. And, the temperature of compressor inlet of third system is constant for all cooling load. Compared to first and second system, the compressor inlet temperature of the first system is higher than second one for all cooling loads. From the above results, third system, which is bypassing hot-gas to evaporator inlet, is more advantageous when considering the precise temperature control and excellent performance of oil and water cooler of industrial machine.

Photovoltaic System using Two-Phase Chopper System with Two Seperate Groups (2분할 2상 쵸퍼에 의한 태양광발전 시스템)

  • Kim, Yun-Kyung;Sung, Nark-Kuy;Lee, Seung-Hwan;Kang, Seung-Uk;Kim, Yeong-Ju;Han, Kyung-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1998.07f
    • /
    • pp.2175-2177
    • /
    • 1998
  • Sunlight makes it possible to adjust scale of electric power easily as a electric energy without air pollution. Solar cell to convert the sunlight to the electric energy has DC output which is influenced on temperature and irradiation time. Conversion of DC output from the solar cell to AC is necessary due to the fact that most loads to be used currently are compatible with AC generally. In the present work, Two-phase chopper system with two seperate groups to obtain two identical DC is used to preserve the energy from the solar cell in two battery. They are controlled to be operated around maximum output of the solar cell under the condition of constant voltage. Photovoltaic system with DC${\rightarrow}$AC conversion is also investigated for big capacity and two seperated electric power using two separate inverter.

  • PDF

Output Voltage Ripple Analysis and Design Considerations of Intrinsic Safety Flyback Converter Based on Energy Transmission Modes

  • Hu, Wei;Zhang, Fangying;Xu, Yawu;Chen, Xinbing
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.908-917
    • /
    • 2014
  • For the purpose of designing an intrinsic safety Flyback converter with minimal output voltage ripple based on a specified output current, this paper first classified the energy transmission modes of the system into three sorts, namely, the Complete Inductor Supply Mode-CCM (CISM-CCM), the Incomplete Inductor Supply Mode-CCM (IISM-CCM) and the Incomplete Inductor Supply Mode-DCM (IISM-DCM). Then, the critical secondary self-inductance assorting the three modes are deduced and expressions of the output voltage ripples (OVR) are presented. For a Flyback converter with constant loads and switching frequency, it is shown that the output voltage ripple in the CISM-CCM is the smallest and that it has no relationship with the secondary self-inductance. Otherwise, the OVR of the other two modes are bigger than the previously mentioned one. It is concluded that the critical inductance between the CISM-CCM and the IISM-CCM is the minimal secondary self-inductance to ensure the smallest output voltage ripple. At last, a design method to guarantee the minimum OVR within the scales of the input voltage and load are analyzed, and the minimum secondary self-inductance is proposed to minimize the OVR. Simulations and experiments are given to verify the results.

Development of Enhanced Contingency Screening and Selection Algorithm for On-line Transient Security Assessment (과도안전도 평가를 위한 개선된 상정고장 선택 및 여과 알고리즘 개발)

  • Kim Yong-Hak;Song Sung-Geun;Nam Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.6
    • /
    • pp.306-314
    • /
    • 2005
  • In this paper, a new approach that is based on EEAC & only with network solutions for CS&S in the transient stability assessment is developed. The proposed CS&S algorithm in conjunction with EEAC to include the capability of performing on-line TSA without TDS is used to calculate the critical clearing time for stability index. In this algorithm, all generators are represented by classical models and all loads are represented by constant impedance load models. The accelerating & synchronizing power coefficient as an index is determined at its disturbance through solving network equation directly. As mentioned above, a new index for generator is generally used to determine the critical generators group. The generator rotor angle is fixed for non-critical generators group, but has equal angle increments for critical generators group. Finally, the critical clearing time is calculated from the power-angle relationship of equivalent OMIB system. The proposed CS&S algorithm currently being implemented is applied to the KEPCO system. The CS&S result was remarkably similar to TSAT program and SIME. Therefore, it was found to be suitable for a fast & highly efficient CS&S algorithm in TSA. The time of CS&S for the 139 contingencies using proposed CS&S algorithm takes less than 3 seconds on Pentium 4, 3GHz Desktop.

A novel higher order shear deformation theory based on the neutral surface concept of FGM plate under transverse load

  • Daouadji, Tahar Hassaine;Benferhat, Rabia;Adim, Belkacem
    • Advances in materials Research
    • /
    • v.5 no.2
    • /
    • pp.107-120
    • /
    • 2016
  • The static analysis of the simply supported functionally graded plate under transverse load by using a new sinusoidal shear deformation theory based on the neutral surface concept is investigated analytically in the present paper. No transversal shear correction factors are needed because a correct representation of the transversal shearing strain is given. The mechanical properties of the FGM plate are assumed to vary continuously through the thickness according to a power law formulation except Poisson's ratio, which is kept constant. The equilibrium and stability equations are derived by employing the principle of virtual work. Results are provided for thick to thin plates and for different values of the gradient index k, which subjected to sinusoidal or uniformly distributed lateral loads. The accuracy of the present results is verified by comparing it with finite element solution. From the obtained results, it can be concluded that the proposed theory is accurate and efficient in predicting the displacements and stresses of functionally graded plates.