• Title/Summary/Keyword: Constant power loads

검색결과 108건 처리시간 0.026초

전기 자동차의 DC 배전 시스템을 위한 양방향 DC/DC 컨버터의 제어 (Control of the Bidirectional DC/DC Converter for a DC Distribution Power System in Electric Vehicles)

  • 장한솔;이준민;김춘택;나재두;김영석
    • 전기학회논문지
    • /
    • 제62권7호
    • /
    • pp.943-949
    • /
    • 2013
  • Recently, an electric vehicle (EV) has been become a huge issue in the automotive industry. The EV has many electrical units: electric motors, batteries, converters, etc. The DC distribution power system (DPS) is essential for the EV. The DC DPS offers many advantages. However, multiple loads in the DC DPS may affect the severe instability on the DC bus voltage. Therefore, a voltage bus conditioner (VBC) may use the DC DPS. The VBC is used to mitigate the voltage transient on the bus. Thus, a suitable control technique should be selected for the VBC. In this research, Current controller with fixed switching frequency is designed and applied for the VBC. The DC DPS consist of both a resistor load and a boost converter load. The load variations cause the instability of the DC DPS. This instability is mitigated by the VBC. The simulation results by Matlab simulink and experimental results are presented for validating the proposed VBC and designed control technique.

빙축열 시스템의 효율적인 제어를 위한 냉방부하 예측에 관한 연구 (A Study on Estimation of Cooling Load for Effective Control of Ice Thermal Storage System)

  • 유성연;한규현;이제묘;한승호
    • 설비공학논문집
    • /
    • 제20권2호
    • /
    • pp.128-136
    • /
    • 2008
  • It is necessary to estimate the cooling load of the next day for effective control of ice thermal storage system. In this paper, new methodology is proposed to estimate the cooling load using design parameters of building and predicted weather data. Only six input parameters such as sensible heat coefficient and constant, latent heat coefficient and constant, maximum and minimum temperature are necessary to obtain hourly distribution of cooling load for the next day. Two benchmarking buildings(hospital and research institute) are selected to validate the performance of the proposed method, and the estimated cooling loads in hourly and daily bases are calculated and compared with the measured data for E hospital. The estimated results show fairly good agreement with the measured data for both buildings.

A Study for DC 1500V Railroad System Modeling Using EMTDC

  • 이한상;이장무;이한민;장길수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.218-219
    • /
    • 2006
  • This paper is about modeling on 1500V DC electric railroad system. Electric railroad systems have peculiar characteristics against other electric system. The characteristics arc that the railroad systems have electric vehicle loads which are power-varying and location-varying with time. Because of this load characteristic, the electric railroad system modeling which reflects its own characteristics on EMTDC simulation could not be achieved. However, to reflect load characteristic on EMTDC, this paper suggests electric railroad system modeling by using TPS (Train Performance Simulator) that was developed in Korea Railroad Research Institute. A TPS program has various kinds of input data, such as operation condition, vehicle condition, and power system condition. By these data, TPS calculates mechanical power consumption and location, especially it decide electric power consumption on the basis of the fact that consumed electric and mechanical power are equal. Moreover, on this paper, movement of vehicle is reflected on EMTDC simulation as variation of feeder impedance. Also, an electric vehicle load is modeled as time-varying constant power load model.

  • PDF

Aerodynamic assessment of airfoils for use in small wind turbines

  • Okita, Willian M.;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.35-54
    • /
    • 2019
  • A successful blade design must satisfy some criterions which might be in conflict with maximizing annual energy yield for a specified wind speed distribution. These criterions include maximizing power output, more resistance to fatigue loads, reduction of tip deflection, avoid resonance and minimize weight and cost. These criterions can be satisfied by modifying the geometrical parameters of the blade. This study is dedicated to the aerodynamic assessment of a 20 kW horizontal axis wind turbine operating with two possible airfoils; that is $G{\ddot{o}}ttingen$ 413 and NACA 2415 airfoils (the Gottingen airfoil never been used in wind turbines). For this study parameters such as chord (constant, tapered and elliptic), twist angle (constant and linear) are varied and applied to the two airfoils independently in order to determine the most adequate blade configuration that produce the highest annual energy output. A home built numerical code based on the Blade Element Momentum (BEM) method with both Prandtl tip loss correction and Glauert correction, X-Foil and Weibull distribution is developed in Matlab and validated against available numerical and experimental data. The results of the assessment showed that the NACA 2415 airfoil section with elliptic chord and constant twist angle distributions produced the highest annual energy production.

Influence of Physical Load on the Stability of Organic Solar Cells with Polymer : Fullerene Bulk Heterojunction Nanolayers

  • Lee, Sooyong;Kim, Hwajeong;Kim, Youngkyoo
    • Current Photovoltaic Research
    • /
    • 제4권2호
    • /
    • pp.48-53
    • /
    • 2016
  • We report the effect of physical load on the stability of organic solar cells under physical loads. The active layers in organic solar cells were fabricated with bulk heterojunction films (BHJ) films of poly (3-hexylthiophene) and phenyl-$C_{61}$-butyric methyl ester. The loading time was varied up to 60 s by keeping the physical load constant. Results showed that the open circuit voltage was not influenced by the physical load but other solar cell parameters were sensitive to the loading time. The fill factor was very slightly increased at 15 s, while short circuit current density was well kept for 30 s. The power conversion efficiency was reasonably maintained for 45 s but became significantly decreased by the continuous loading for 60 s.

승강압초퍼와 부부공진 인버터를 이용한 계통연계형 태양광 발전시스템 (Utility interactive PV system using buck-boost chopper and partial resonant Inverter)

  • 고강훈;이현우;김영철;정명웅;홍두성
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.278-281
    • /
    • 1999
  • In a utility interactive photovoltaic system, a PWM inverter is used for the connection between the photovoltaic arrays and the utility. The DC current becomes pulsated causes the distortion of the AC current waveform. This paper presents the reduced pulsation of DC input current by operating the inverter with buck-boost chopper in the discontinuous conduction mode. The DC current with contains harmonics component is analyzed by means of separating into two terms of a ripple component and a direct component. The constant DC current without pulsation is supplied from photovoltaic array to the inverter. The proposed inverter system provide a sinusoidal AC current for domestic loads and the utility line with unity power factor.

  • PDF

전력계통의 최적 발전기기동정지계획 산법에 관한 연구 (A Study on the Optimal Unit Commitment Algorithm for Electric Power Systems)

  • 김준현;유인근
    • 대한전기학회논문지
    • /
    • 제34권6호
    • /
    • pp.220-229
    • /
    • 1985
  • This paper proposes a new optimal unit commitment algorithm for the rational operation of electric power systems. Especially, the algorithm is improved by considering transmission line capacity limits and load forecasting uncertainty with the consideration of the participation factors of each units, so that the method becomes more reliable and flexible one. The transmission losses are considered by using updated penalty factors obtained from the constant matrixes of the fast decoupled load flow method, the system loads are distributed at each buses, and the several necessary operational constraints are also considered for the purpose of presenting a more practicable scheme. Finally, the effectiveness of the proposed algorithm has been demonstrated by applying to the 23-bus model system.

  • PDF

벡터제어에 의한 자립식 유도발전기의 여자특성 해석 (Excitation Characteristics Analysis of an Isolated Induction Generator by applying Vector Control)

  • 이규민;구태만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.896-898
    • /
    • 2004
  • The lagging reactive power should be supplied for the excitation of isolated squirrel-cage induction generators by external circuit. This paper deals with a technique to drive the equations for analysis of the excitation characteristics and performance of an isolated squirrel-cage induction generator from the conventional equivalent circuit of induction machine, transform the equations into d-q coordinates to use vector control technique, and carry out the simulation of an induction generator system with various conditions using MATLAB. The results of the simulation indicate that moderate reactive power can be controlled effectively to maintain constant voltage over a wide range of the rotor speeds and loads.

  • PDF

순간전압품질이 저압 전기기기 운전한계에 미치는 특성연구 (The study on the characteristics of operating limit of low voltage electric machine under the effects of voltage quality)

  • 박인덕;정성원;김재현;이근준
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2007년도 하계학술대회 논문집
    • /
    • pp.95-97
    • /
    • 2007
  • This paper studies on operating limit curve of low voltage electric machinery with respect to source voltage variation or sag. Also, it discusses electric machine and compensation equipment design methodology based on voltage quality effect assessment technology. Voltage quality standards, such as SEMI47, CBEMA, ITIC curve are regarded to examine the relation between time constants of load and sagging time of sag generator, the load(low voltage electric machinery) study. Voltage sag characteristics of loads, time constant and sag relation voltage-time operating limits are tested and verified.

  • PDF

디젤발전기가 포함된 독립형 마이크로그리드에서의 BESS 제어기법 및 운전모드 연구 (Control and Operating Modes of Battery Energy Storage System for a Stand-Alone Microgrid with Diesel Generator)

  • 조종민;안현성;김지찬;차한주
    • 전력전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.86-93
    • /
    • 2018
  • In this work, control methods and operating modes are proposed to manage standalone microgrid. A standalone microgrid generally consists of two sources, namely, battery energy storage system (BESS) and diesel generator (DG). BESS is the main source that supplies active and reactive power regardless of load conditions, whereas DG functions as an auxiliary power source. BESS operates in a constant voltage constant frequency (CVCF) control, which includes proportional-integral + resonant controller in a parallel structure. In CVCF control, the concept of fundamental positive and negative transformation is utilized to generate a three-phase sinusoidal voltage under imbalanced load condition. Operation modes of a standalone microgrid are divided into three modes, namely, normal, charge, and manual modes. To verify the standalone microgrid along with the proposed control methods, a demonstration site is constructed, which contains 115 kWh lead-acid battery bank, 50 kVA three-phase DC - AC inverter, and 50 kVA DG and controllable loads. In the CVCF control, the total harmonic distortion of output voltage is improved to 1.1% under imbalanced load. This work verifies that the standalone microgrid provides high-quality voltage, and three operation modes are performed from the experimental results.