• Title/Summary/Keyword: Constant potential

Search Result 987, Processing Time 0.03 seconds

PROPERTIES OF PIB-CU FILMS ACCELERATION VOLTAGE AND IONIZATION POTENTIAL

  • Kim, K.H.;Jang, H.G.;Han, S.;Choi, S.C.;Choi, D.J.;Jung, H.J.;Koh, S.K.
    • Journal of Surface Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.570-576
    • /
    • 1996
  • Cu films for future ULSI metallization were prepared by partially ionized beam (PIB) deposition and characterized in terms of preferred orientation, grain size, roughness and resistivity. PIB-Cu films were prepared on Si (100) at pressure of $8 \times 10^{-7}$~$1 \times 10^{-6}$ Torr. Effects of acceleration voltage and ionization potential on the properties of PIB-Cu films have been investigated. As the acceleration voltage increased at constant ionization potential of 400 V, the degree of preferred orientation and surface smoothness of the Cu film increased. At the ionization potential of 450 V, the degree of preferred orientation at the acceleration voltage higher than 2 kV decreased and surface roughness increased with acceleration voltage. Grain size of Cu films increased to 1100 $\AA$ initially up to applied acceleration voltage of 1 kV, above which a little increase occurred with the acceleration voltage. There was no indication of impurities such as C, O in all sample. Resistivity of Cu film had the same trends as the surface roughness with acceleration voltage and ionization potential. The increase of electrical resistivity of PIB-Cu films was explained in terms of grain size and surface roughness

  • PDF

Wear Analysis of Engine Bearings at Constant Shaft Angular Speed on a Firing State - Part I: Understanding of Bearing Wear Region (파이어링 상태의 일정 축 각속도에서 엔진 베어링의 마모 해석 - Part I: 베어링 마모발생 부위 파악)

  • Chun, Sang Myung
    • Tribology and Lubricants
    • /
    • v.34 no.3
    • /
    • pp.93-107
    • /
    • 2018
  • The purpose of Part I of this study is to find the potential region of wear scarring on engine journal bearings operating at a constant angular crank shaft velocity under firing conditions. To do this, we calculate the applied loads and eccentricities of a big-end journal bearing installed on a four-stroke and four-cylinder engine at every crank angle. Then, we find potential wear regions, such as a minimum oil film thickness, at every crank angle below most oil film thickness scarring wear (MOFTSW) obtained based on the concept of the centerline average surface roughness. Thus, the wear region is defined as a set of each film thickness below the MOFTSW at every crank angle. In this region, the wear volume changes according to the wear depth and wear angle, depending on the minimum oil film thickness at every crank angle. The total wear volume is the summation during one cycle. Graphical views of the region in the two-dimensional coordinates show the crank angle and bearing angle along the journal center path, indicating the position of the minimum oil film thickness. The results of wear analysis show that the possible wear region is located at a few tens of angles behind the upper center of a big-end bearing at maximum power rpm.

Relation between Magnetic Properties and Surface Morphology of Co-Base Alloy Film by Electrodeposition Method (전착법을 이용한 Co계 합금박막의 표면형태와 자기특성과의 관계)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.624-630
    • /
    • 2017
  • In this study, we investigated the overpotential of precipitation related to the catalytic activity of electrodes on the initial process of electrodeposition of Co and Co-Ni alloys on polycrystalline Cu substrates. In the case of Co electrodeposition, the surface morphology and the magnetic property change depending on the film thickness, and the relationship with the electrode potential fluctuation was shown. Initially, the deposition potential(-170 mV) of the Cu electrode as a substrate was shown, the electrode potential($E_{dep}$) at the $T_{on}$ of electrodeposition and the deposition potential(-600 mV) of the surface of the electrodeposited Co film after $T_{off}$ and when the pulse current was completed were shown. No significant change in the electrode potential value was observed when the pulse current was energized. However, in a range of number of pulses up to 5, there was a small fluctuation in the values of $E_{dep}$ and $E_{imm}$. In addition, in the Co-Ni alloy electrodeposition, the deposition potential(-280 mV) of the Cu electrode as the substrate exhibited the deposition potential(-615 mV) of the electrodeposited Co-Ni alloy after pulsed current application, the $E_{dep}$ of electrodeposition at the $T_{on}$ of each pulse and the $E_{imm}$ at the $T_{off}$ varied greatly each time the pulse current was applied. From 20 % to less than 90 % of the Co content of the thin film was continuously changed, and the value was constant at a pulse number of 100 or more. In any case, it was found that the shape of the substrate had a great influence.

Evaluation of Surface Crack and Blind Crack by Induced Current Focusing Potential Drop(ICFPD) Technique (집중유도형 교류전위차법에 의한 표면결함 및 이면결함의 평가에 관한 연구)

  • Kim, Hoon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.16 no.2
    • /
    • pp.86-94
    • /
    • 1996
  • In the life management safety evaluation of constructs base on a fracture mechanics, the size of defect is the very important parameter. ICFPD (Induced Current Focusing Potential Drop)technique has been developed for detecting and sizing of defects that exist not only on surface but also inside and interior of structural components. The principle of this technique is to induce a focusing current at an exploration region by a straight induction wire through which an alternating current (AC)flows that has constant amplitude and frequency. The potential distributed on the surface of metallic material is measured by potential pick-up pins that are settled on the probe. In this paper, this NDI technique was applied to the evaluation of surface cracks and blind cracks in plate specimens. The results of this study show that in the case of surface crack, the distribution of potential drop is varied with the inched angle of surface crack, and the potential drops in the crack region and the crack edge region are varied with the inclined angle and depth of crack. The distribution of potential drop for the blind crack is distingulished from that for the surface crack, and the potential drop in the crack region is varied with the depth of crack.

  • PDF

Application of the Polarised Potential-pH Diagrams to Investigate the Role of Sulfate and Dissolved Oxygen in the 3550-ppm NaCl Solution on the Corrosion Behaviour of AISI 316L Stainless Steel

  • Chandra-ambhorn, S.;Kumpai, K.;Muangtong, P.;Wachirasiri, W.;Daopiset, S.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.45-49
    • /
    • 2008
  • The cyclic polarisation technique was applied to determine the corrosion, primary-passivation, transpassive, and protection potential of AISI 316L stainless steels immersed in 3550-ppm NaCl solution containing sulfate in the content up to 3000 ppm. The solutions were kept constant at $27^{\circ}C$ and saturated by laboratory air. The solution pH was varied from 3 to 11. Each type of potentials was plotted in function of pH and linked as lines to determine the different zones in the constructed potential-pH diagram. The predominant regimes of the immunity, general corrosion, perfect passivation, imperfect passivation, and pitting corrosion were determined based on those lines of potentials. Comparing to the potential-pH diagram of specimens immersed in the aerated and deaerated 3550-ppm NaCl solutions, the addition of 3000-ppm $Na_2SO_4$ to these solutions increased the overall, perfect and imperfect, passivation regime by shifting the transpassive-potential line to the noble direction. However, it also widened the imperfect passivation area. The addition of $Na_2SO_4$ did not significantly affect the corrosion potential. It was found that the dissolved oxygen tends to negatively shift the transpassive-potential and protection-potential lines at all studied pH. The considerable effect of dissolved oxygen on corrosion and primary-passivation potentials could not be observed.

Damage Potential Analysis and Earthquake Engineering-related Implications of Sep.12, 2016 M5.8 Gyeongju Earthquake (2016년 9월 12일 M5.8 경주지진의 데미지 포텐셜 분석 및 내진공학 측면의 시사점)

  • Lee, Cheol Ho;Park, Ji-Hun;Kim, Taejin;Kim, Sung-Yong;Kim, Dong-Kwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.527-536
    • /
    • 2016
  • This paper investigates seismic damage potential of recent September 12 M5.8 Gyeongju earthquake from diverse earthquake engineering perspectives using the accelerograms recorded at three stations near the epicenter. In time domain, strong motion durations are evaluated based on the accelerograms and compared with statistical averages of the ground motions with similar magnitude, epicentral distance and soil conditions, while Fourier analysis using FFT is performed to identify damaging frequency contents contained in the earthquake. Effective peak ground accelerations are evaluated from the calculated response spectra and compared with apparent peak ground accelerations and the design spectrum in KBC 2016. All these results are used to consistently explain the reason why most of seismic damage in the earthquake was concentrated on low-rise stiff buildings but not quite significant. In order to comparatively appraise the damage potential, the constant ductility spectrum constructed from the Gyeongju earthquake is compared with that of the well-known 1940 El Centro earthquake. Deconvolution analysis by using one accelerogram speculated to be recorded at a stiff soil site is also performed to estimate the soil profile conforming to the response spectrum characteristics. Finally, response history analysis for 39- and 61-story tall buildings is performed as a case study to explain significant building vibration felt on the upper floors of some tall buildings in Busan area during the Gyeongju earthquake. Seismic design and retrofit implications of M5.8 Gyeongju earthquake are summarized for further research efforts and improvements of relevant practice.

Aerodynamic Analysis of an Arbitrary Three-Dimensional Blended Wing Body Aircraft using Panel Method (패널법을 이용한 임의의 3차원 BWB 형상 항공기에 대한 공력해석)

  • Lee, Sea-Wook;Yang, Jin-Yeol;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.11
    • /
    • pp.1066-1072
    • /
    • 2009
  • A panel method based on potential flow theory is developed for the steady/unsteady aerodynamic analysis of arbitrary three-dimensional Blended Wing Body aircraft. The panel method uses the piecewise constant source and doublet singularities as a solution. This potential based panel method is founded on the Dirichlet boundary condition and coupled with the time-stepping method. The present method uses the time-stepping loop to simulate the unsteady motion of the aircraft. The present method can solve the three-dimensional flow over the complex bodies with less computing time and provide various aerodynamic derivatives to secure the stability of Blended Wing Body aircraft. That will do much for practical applications such as aerodynamic designs and analysis of aircraft configurations and flight simulation.

Study on the Corrosion Fatigue Crack Propagation Behavior of Steel Used for Frame of Vehicles in Marine Environment (해양환경중에서 자동차 프레임용 강재의 부식피로균열전파거동에 관한 연구)

  • 이상열;임종문;이종악
    • Journal of Ocean Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.76-84
    • /
    • 1992
  • In this study, corrosion fatigue test of SAPH45 steel was performed by the use of plane behavior of base metal (BM) and heat affected zone (HAZ) of SAPH45. The main results obtained are as follows: 1) The more aspect ratio (b/t) of corner crack decreases, the more aspect ratio (b/a) takes greatly effect by corrosion. 2) The correlation between the stress intensity factor range ($\Delta$k) and crack growth rate (da/dN) for weldment in seawater is given by Paris rule as follow: da/dN=C($\Delta$K) super(m). Where m is constant, and the value is 3.82-3.84. 3) The accelerative factor ($\alpha$) of BM and HAZ under seawater is about 1.1-1.9, and ($\alpha$) of HAZ increases more and more under the low $\Delta$K region. 4) HAZ is more susceptible to corrowion than BM because of potential of electrode (E sub(c)) of HAZ becomes more less noble potential than that of BM.

  • PDF

A new method for in line electrokinetic characterization of cakes

  • Lanteri, Yannick;Ballout, Wael;Fievet, Patrick;Deon, Sebastien;Szymczyk, Anthony;Sauvade, Patrick
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.157-174
    • /
    • 2013
  • The present study is devoted to the validation of a new method for in line electrokinetic characterisation of deposits on membrane surfaces. This method is based upon simultaneous measurements of transversal streaming potential and permeates flux at constant pressure before and during the deposit formation. Dead-end filtration experiments were conducted with negative flat membranes forming a narrow slit channel, negative hollow fiber membranes and mono-dispersed suspensions of (negatively charged) polystyrene latex and (positively charged) melamine particles at various concentrations. It was observed that the overall streaming potential coefficient increased in absolute value with the deposited latex quantity, whereas it decreased and changed of sign during the filtration of melamine suspensions. By considering a resistance-in-series model, the streaming potential coefficient of the single deposit ($SP_d$) was deduced from the electrokinetic and hydraulic measurements. The independence of $SP_d$ with respect to growth kinetics validates the measurement method and the reliability of the proposed procedure for calculating $SP_d$. It was found that $SP_d$ levelled off much more quickly when filtration was performed through the slit channel. This different behaviour could result from a non-uniform distribution of the deposit thickness along the membrane given that the position of measuring electrodes is different between the two cells.

SOME RESULTS ON CONCIRCULAR VECTOR FIELDS AND THEIR APPLICATIONS TO RICCI SOLITONS

  • CHEN, BANG-YEN
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.5
    • /
    • pp.1535-1547
    • /
    • 2015
  • A vector field on a Riemannian manifold (M, g) is called concircular if it satisfies ${\nabla}X^v={\mu}X$ for any vector X tangent to M, where ${\nabla}$ is the Levi-Civita connection and ${\mu}$ is a non-trivial function on M. A smooth vector field ${\xi}$ on a Riemannian manifold (M, g) is said to define a Ricci soliton if it satisfies the following Ricci soliton equation: $$\frac{1}{2}L_{\xi}g+Ric={\lambda}g$$, where $L_{\xi}g$ is the Lie-derivative of the metric tensor g with respect to ${\xi}$, Ric is the Ricci tensor of (M, g) and ${\lambda}$ is a constant. A Ricci soliton (M, g, ${\xi}$, ${\lambda}$) on a Riemannian manifold (M, g) is said to have concircular potential field if its potential field is a concircular vector field. In the first part of this paper we determine Riemannian manifolds which admit a concircular vector field. In the second part we classify Ricci solitons with concircular potential field. In the last part we prove some important properties of Ricci solitons on submanifolds of a Riemannian manifold equipped with a concircular vector field.