• 제목/요약/키워드: Constant current method

검색결과 830건 처리시간 0.031초

용접품질 향상을 위한 저항 스폿 용접용 인버터의 동저항 특성을 이용한 새로운 제어기법 (A Novel Control Method of Resistance Spot Welding Inverter using Dynamic Resistance Characteristics for Weld Quality Improvement)

  • 강성관;정재헌;노의철
    • 전력전자학회논문지
    • /
    • 제20권6호
    • /
    • pp.491-497
    • /
    • 2015
  • This study proposes a new control method for a resistance spot welding inverter to improve weld quality. The proposed method is based on the dynamic resistance characteristics of steel sheets to be welded. A point in the second peak value of the dynamic resistance occurs during one shot of the welding current flow. A constant voltage control is applied from zero to the peak point, and a constant current control is adopted from the peak point to the end of the shot. The mixed mode control of the constant voltage and current guarantees high weld quality. Experiments are conducted with a 5 kA power supply and 0.5 mm steel sheets to compare quality. Experimental results show that weld quality is improved more than 10 times that of the conventional control method.

레이저 다이오드의 코팅된 단면의 반사율 측정에 사용되는 문턱전류비에 관한 연구 (A study on the threshold current ratio method using the measurement of coated facet reflectivity of a laser diode)

  • 이상무;김부균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 추계학술대회 논문집 학회본부
    • /
    • pp.541-543
    • /
    • 1995
  • We propose the improved threshold current ratio method to determine the reflectivity of coated facets. The carrier recombination time used in the improved threshold current ratio method depends on the value of facet reflectivities. However, the carrier recombination time used in the conventional threshold current ratio method is constant regardless of facet reflectivities. The difference between the results of the two methods increases as the reflectivity of a coated facet decreases.

  • PDF

기동방식을 고려한 DC급전계통 보호알고리즘 (A Protection Algorithm for DC Railway Systems Considering Train Starting)

  • 권영진;최동민;강상희;한문섭;이재경
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.307-309
    • /
    • 2004
  • A DC railway system has low feeder voltage, The remote fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the train starting current. The train starting current increases step by step but the fault current increases all at once. So the type of $\bigtriangleup I\;relay(50F)$ was developed using the different characteristics between the load starting current and the fault current. As for the train starting current, the time constant of train current at each step is much smaller than that of the fault current. To detect faults in U railway systems, an algorithm that is independent of train starting current. This algorithm use the time constant calculated by the method of least squares is presented in this paper.

  • PDF

시정수를 이용한 직류철도급전계통에서의 고장판단 및 고장점표정 알고리즘 (A Fault Detection and Location Algorithm Using a Time Constant for DC Railway Systems)

  • 양언필;강상희;권영진
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권10호
    • /
    • pp.563-570
    • /
    • 2003
  • When a fault occurs on railway feeders it is very important to detect the fault to protect trains and facilities. Because a DC railway system has low feeder voltage, The fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the load starting current. The load starting current increases step by step but the fault current increases at one time. So the type of $\Delta$I/ relay(50F) was developed using the different characteristics between the load starting current and the fault current. The load starting current increases step by step so the time constant of each step is much smaller than that of the fault current. First, to detect faults in DC railway systems, an algorithm using the time constant calculated by the method of least squares is presented in this paper. If a fault occurs on DC railway systems it is necessary to find a fault location to repair the faulted system as soon as possible. The second aim of the paper is to calculate the accurate fault location using Kirchhoff's voltage law.

DC철도 급전계통 보호시스템 구성 (A Protection Scheme for DC Railway Systems)

  • 권영진;강상희;오광해;이재경;이명희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.91-94
    • /
    • 2003
  • A DC railway system has low feeder voltage, The fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the load starting current. The load starting current increases step by step but the fault current increases all at once. So the type of ${\Delta}I$ relay(50F) was developed using the different characteristics between the load starting current and the fault current. As for the load starting current, the time constant of load current at each step is much smaller than that of the fault current. First, to detect faults in DC railway systems, an algorithm using the time constant calculated by the method of least squares is presented in this paper. Secondly, to compose a protection scheme for DC railway systems is presented in this paper.

  • PDF

Novel Soft Starting Algorithm of Single Phase Induction Motors by Using PWM Inverter

  • Kim, Hae-Jin;Hwang, Seon-Hwan;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • 제18권6호
    • /
    • pp.1720-1728
    • /
    • 2018
  • This paper proposes a novel soft starting algorithm by using PWM inverter technique to control an amplitude of the motor starting current at a single-phase induction motor (SPIM). Traditional SPIM starting methods such as a Split-Phase, Capacitor-Start, Permanent-Split Capacitor (PSC), Capacitor-Start Capacitor-Run (CSCR), basically cannot control the magnitude of starting current due to the fixed system structures. Therefore, in this paper, a soft starting algorithm based on a proportional resonant (PR) control with a variable and constant frequency is proposed to reduce the inrush current and starting up time. In addition, a transition algorithm for operation modes is devised to generate a constant voltage and constant frequency (CVCF). The validity and effectiveness of the proposed soft starting method and transition algorithm are verified through experimental results.

Direct AC LED Driver for Wide Power Range and Precise Constant Current Regulation

  • Hwang, Minha;Eum, Hyunchul;Yang, Seunguk;Park, Gyumin;Park, Inki
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2018년도 전력전자학술대회
    • /
    • pp.522-524
    • /
    • 2018
  • A New Direct AC LED Driver has been proposed for wide output power range and precise constant current regulation using an advanced auto commutation topology. The conventional shunt regulation method provides a stepped input current shape by fixed regulation references in the linear regulator of the each channel, which results in poor current regulation and high THD. The conventional method needs to assign a linear regulator in each LED channel so that the number of linear regulator increases when extending the number of channels especially at high power application. The proposed regulation method can drive multiple switches to regulate each LED channel current by a single amplifier with sinusoidal reference so that large number of LED channel can be simply extended with less BOM cost and low THD is obtained with the accurate current regulation thanks to the sinusoidal input current control in the closed loop control. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a 20-W LED driver prototype are presented.

  • PDF

정전력 열차 모델을 이용한 AT급전 시스템 해석 (Analysis of AT Feeding System using Constant Power Model for Train)

  • 김백
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1327-1331
    • /
    • 2004
  • In this paper constant power models for electric trains have been used to analyze the steady states of the AT feeding systems. There are some previous studies utilizing constant impedance models or constant current models. These mentioned models are easy to use, but even so they don't yield exact results because of the innate restraints of the models since linear models cannot represent the characteristic of constant power in inverter-driven trains. It is reasonable that the train be considered as a constant load model when it drives or as a constant source model when it applies regenerative brake. Nonlinear equations which reflect constant power model for train have been developed by considering mutual impedances between wires and AT's turn-ratio of 1:1, then these equations have been solved by N-R iterative method. The proposed method doesn't need any specific assumptions through either the process of developing equations or the process of acquiring solutions, so it can be said to be stricter than other conventional methods.

  • PDF

정전류/정출력 고속충전 방식에 따른 리튬이온전지의 열화 비교 연구 (Effect of Fast Charging Mode on the Degradation of Lithium-Ion Battery: Constant Current vs. Constant Power)

  • 박선호;오은택;박시영;임지훈;최진혁;이용민
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권2호
    • /
    • pp.173-179
    • /
    • 2020
  • 전기자동차의 보급이 확대됨에 따라, 소비자의 고속충전에 요구가 높아지고 있으나 관련 연구는 미흡한 실정이다. 본 연구에서는 LiNi0.5Co0.2Mn0.3O2/Graphite 18650 실린더형 리튬이온전지를 이용하여, 정전류와 정출력 충전방식에 따른 전지 열화현상을 비교한다. 정전류모드의 충전속도를 1C, 2C, 3C, 4C로 설정하고, 각 충전속도에서의 에너지를 기반으로 정출력값을 산정하였다. 따라서, 동일 충전 에너지를 기반하여, 두 충전방식에 따른 전지 열화를 분석한 결과, 3C의 높은 율속에서 정출력 충전방식이 전지의 열화를 늦출 수 있음이 전압곡선, 용량유지율, 직류저항값으로 확인되었다. 그러나, 충전속도를 4C 이상 높이면, 충전방식보다 전지간 편차가 열화 거동을 지배하였다.

새로운 직류급전계통 보호 알고리즘 (A New Protection Algorithm for DC Railway Systems)

  • 권영진;강상희;현승호;한문섭;이재경
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2004년도 춘계학술대회 논문집
    • /
    • pp.1280-1285
    • /
    • 2004
  • ADC railway system has low feeder voltage, The fault current can be smaller than the current of load starting. So it is important to discriminate between the small fault current and the load starting current. The load starting current increases step by step but the fault current increases all at once. As for the load starting current, the time constant of load current at each step is much smaller than that of the fault current. First, to detect faults in DC railway systems, an algorithm using the time constant calculated by the method of least squares is presented in this paper.

  • PDF