• Title/Summary/Keyword: Constant current method

Search Result 830, Processing Time 0.029 seconds

Application of Electro-deposition Method for Crack Closing and Surface Improvement of Reinforced Concrete (철근콘크리트의 균열폐색 및 표면개선을 위한 전착의 응용)

  • 문한영;류재석
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.6
    • /
    • pp.79-88
    • /
    • 1999
  • In this paper, the electro-deposition method for the rehabilitation of cracked concrete, based on the electro-chemical technique, is presented. The main purpose of this paper is to apply this technique to reinforced concrete members on land. After cracking with a specified load(crack width 0.5mm), 10$\times$10$\times$20cm concrete specimens with embedded steel bars were immersed in several solutions, then a constant current density between the embedded steel in concrete and an electrode in the solution was applied for 4~20 weeks. The results indicate that electro-deposits formed in this process are able to close concrete cracks and to coat the concrete surface and that formation of these electro-deposits is confirmed to have an effect of protection against detrimental materials. Therefore, it is demonstrated that the electro-deposition method can be usefully applied for the rehabilitation technique of concrete.

Simulation of Charging Process in PTFE Electret (PTFE 일렉트렛트의 대전 과정 시뮬레이션)

  • Park, Geon-Ho;Kim, Sang-Jin;Sung, Nak-Jin;Bae, Duk-Kwun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05b
    • /
    • pp.123-126
    • /
    • 2005
  • In this study, the Thermally Stimulated Current(TSC) of corona charged PTFE is studied and the simulation of corona charging process is also calculated by Finite Element Method. The electrets which were formed by applying high voltages (DC ${\pm}5{\sim}{\pm}8$ [kV]) to PTFE, are used to measure TSC in the temperature range of $-100{\sim}+200$ [$^{\circ}C$] and then the Finite Element Method is performed to examine corona charging process using a obtained physical constants. As a result. it is confirmed that the charging negative corona is profitable as the applications are manufactured, because the time constant of negative corona is much larger than it of positive corona. And it is attempted to estimate the corona charging process in space using simulation.

  • PDF

A study of electromagnetic proportional flow control valve (비례전자식 유량제어벨브의 해석에 관한 연구)

  • Song, Chang-Seop;Yoon, Jang-Sang;Suh, Jong-Beom
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.1
    • /
    • pp.100-107
    • /
    • 1993
  • In this study, it is analyzed that an electromagnet whose generating force is proportional to constant current through coil in its coperating range. To find arelation between magnetic force and the structure in electromagnet, computer simulation method is used by permeance modeling method. When the electromagnet is applied to flow control valve, the relation between input current and flow is found. In order to get a reliability of computer simluation, the simulation results are compared to the experimental result. As the simulation is processed repeatedlyl. it is found that the gap size between plunger and guide steel and the length of tapered brass ring are important factors in electromaget.

  • PDF

The measurement of p-n junction depth by SEM

  • Hur, Chang-Wu;Lee, Kyu-Chung
    • Journal of information and communication convergence engineering
    • /
    • v.5 no.4
    • /
    • pp.324-327
    • /
    • 2007
  • In this paper, the p-n junction depth with nondestructive method by using scanning electron microscopy (SEM) is determined and conformed. By measuring the critical short circuit current on the p-n junction which induced by electron beam and calculating generation range, the diffusion depth can be obtained. It can be seen that values destructively measured by constant angle lapping and nondestructively by this study almost concur. As this result, it is purposed that diffusion depth of p-n junction can be easily measured by nondestruction. This nondestructive method can be recommended highly to the industrial analysis.

DESIGN OF SINGLE-SIDED LINEAR INDUCTION MOTOR USING FINITE ELEMENT METHOD AND SUMT (유한요소법과 SUMT를 이용한 편측식 선형유도전동기의 설계)

  • Im, Dal-Ho;Kim, Hak-Ryun;Lee, Cheol-Jik;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.503-505
    • /
    • 1992
  • This paper describes the optimization of design variables of SLIM using finite element method and SUMT(Sequential Unconstrained Minimization Technique). Thrust is taken as an objective function in order to maximize thrust under constant current drive, and seven independent design variables and nine constraints are chosen. As a result, $\tau$/g(pole pitch/airgap) and $\tau$/$d_{AL}$(pole pitch/aluminum depth) of good criteria in SLIM design are determined.

  • PDF

Voltage Source FEA for Hysteresis Motor using Preisach Model

  • Hong, Sun-Ki;Lee, Seok-Hee;Jung, Hyun-Kyo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.11B no.4
    • /
    • pp.164-168
    • /
    • 2001
  • In this paper voltage source FEA for hysteresis motor considering magnetic hysteresis characteristics is presented. The Preisach model is used as a hysteresis model. System matrix whose unknown variables are vector potentials and currents is formulated for voltage source. The stiffness matrix is maintained constant by using M-iteration method. Therefore the calculation time and efforts are reduced with Choleski direct method. Current waveform can be calculated for arbitrary voltage vaveform considering hysteresis effects.

  • PDF

Fractal Analysis of the Carbonization Pattern Formed on the Surface of a Phenolic Resin (페놀수지 표면에 형성된 탄화패턴에 대한 프랙탈 해석)

  • Kim, Jun-Won;Park, Sang-Taek;Roh, Young-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.24 no.1
    • /
    • pp.124-129
    • /
    • 2010
  • When a phenolic resin is carbonized by the leakage current flowing along its surface, the carbonization pattern is one of the most important factors to determine its carbonization characteristics. However, the typical carbonization pattern of a phenolic resin is too complicated to be analyzed by conventional Euclidean geometry. In most cases, such a complicated shape shows a fractal structure. It is possible, therefore, to examine the characteristics of the carbonization pattern regarding a given phenolic resin. In order to quantitatively investigate the carbonization pattern of the phenolic resin carbonized by a leakage current, in this paper, the fractal dimension of the carbonization pattern has been calculated as a function of the magnitude of a leakage current and the distance between two electrodes. For reliability of calculation, the correlation function as well as the box counting method has been used to calculate the fractal dimension. According to the result of calculation, the fractal dimension increases as the current increases at the constant electrode gap distance. However, there is no significant relation between the fractal dimension and the electrode gap distance at a constant current.

Changes in Corrosion Progress and Ultimate load of Tendon Under 20% and 40% of Ultimate Loading Conditions (파괴하중의 20% 및 40% 인장조건에서 텐던 부식 진행 및 파괴하중 변화)

  • Ryu, Hwa-Sung;An, Gi Hong;Hwang, Chul-Sung;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.4
    • /
    • pp.47-52
    • /
    • 2017
  • PSC (Prestressed Concrete) structures have been used widely for its engineering advantage with using total concrete area as effective compressive section. However tendon inside is exposed to such a high tensile stress that and more attentions should be paid for corrosion control. This work is for changing corrosion current and ultimate strength in tendon with increasing prestressing force in a constant corrosive condition. With increasing prestressing force, corrosion current, corrosion amount, and ultimate load are changed linearly. When prestressing force increases from 20.0 % to 40.0 %, corrosion current increases to 124.4 % and 168.0 % and ultimate load decreases to 87.8 % and 78.4 %, respectively. With inducing constant electrical potential, increasing corrosion current and reduction of strength are evaluated to be linearly related with increasing prestressing load.

Transient loss analysis of non-insulation high temperature superconducting coil using the field-based data profiling method

  • Hoon Jung;Yoon Seok Chae;June Hee Han;Ji Hyung Kim;Seung Hoon Lee;Ho Chan Kim;Young Soo Yoon;Ho Min Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.3
    • /
    • pp.38-42
    • /
    • 2023
  • The evaluation of no-insulation (NI) high-temperature superconducting (HTS) typically uses the lumped equivalent circuit (LEC) model. Constant parameters in the NI HTS LEC model accurately predict voltage and central magnetic field at currents below the critical current. However, it is difficult to find constant circuit parameters that simultaneously satisfy the measured voltage and magnetic field under overcurrent conditions. Recent research highlights changes in contact resistance during transient conditions, which may impact power loss estimation in NI HTS coils. Therefore, we confirm the influence of contact resistance changes on loss calculation in the transient state for NI HTS coil. To achieve this, we introduce a measurement data analysis method based on the LEC model and compare it with the LEC model using constant circuit parameters.

Single-Phase Power Factor Correction(PFC) Converter Using the Variable gain (가변이득을 가지는 디지털제어 단상 역률보상회로)

  • Baek, J.W.;Shin, B.C.;Jeong, C.Y.;Lee, Y.W.;Yoo, D.W.;Kim, H.G.
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.240-243
    • /
    • 2001
  • This paper presents the digital controller using variable gain for single-phase power factor correction (PFC) converter. Generally, the gain of inner current control loop in single-stage PFC converter has a constant magnitude. This is why input current is distorted under low input voltage. In particular, a digital controller has more time delay than an analog controller which degrades characteristics of control loop. So, it causes the problem that the gain of current control loop isn't increased enough. In addition, the oscillation happens in the peak value of the input voltage open loop PFC system gain changes according to ac input voltage. These aspects make the design of the digital PFC controller difficult. In this paper, the improved digital control method for single-phase power factor converter is presented. The variable gain according to input voltage and input current help to improve current shape. The 800W converter is manufactured to verify the proposed control method.

  • PDF