• Title/Summary/Keyword: Constant Temperature Chamber

Search Result 215, Processing Time 0.019 seconds

A Study of Hear Flux and Instantaneous Temperature According to the Initial Tamperature of Combustion Chamber in a Constant Volume Combustion Chamber (연소실 초기온도 변화에 따른 순간열유속에 관한 연구)

  • Lee, Chi-Woo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.6 no.3
    • /
    • pp.193-200
    • /
    • 2003
  • In the production of internal combustion engines, there has been a move towards the development of high performance engines with improved fuel efficiency, lighter weight and smaller sizes. These trends help to answer problems in engines related to thermal load and abnormal combustion. In order to investigate these problems, a thin film-type probe for instantaneously measuring temperatures has been suggested. A method for manufacturing such a probe was established in this study. The instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and the heat flux was obtained through Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe. For achieving the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

  • PDF

A Study of Heat Flux According to the Initial Temperature of Combustion Chamber and Blight of Probe in a Constant Volume Combustion Chamber (돌출높이와 초기온도 변화에 따른 연소실 벽면에서의 열유속에 관한 연구)

  • Lee Chi-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.7
    • /
    • pp.1055-1062
    • /
    • 2004
  • As for the Production of internal combustion engines there has been further movement toward development of high Performance engines with improved fuel efficiency as well as a lightweight and a small size. These tendencies help to solve the problems in engines for example, such as thermal load. abnormal combustion and so on. In order to investigate these Problems, a thin film-type probe for measuring instantaneous temperature has been suggested. A method for manufacturing such a probe was established in this study The instantaneous surface temperature of a constant volume combustion chamber was measured by using this probe and the heat flux was obtained through Fourier analysis In order to thoroughly understand the characteristics of combustion. authors measured wall temperature of combustion chamber and calculated heat flux through a cylinder wall while varying the protrusion height of probe. For these Purposes, the instantaneous surface temperature probe was developed. thereby making possible the analysis of instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

Study on the Heat Flux Using Instantaneous Temperature as Height of Probe in the Combustion Chamber (연손실 순간온도 측저에 있어서 돌출높이에 따른 실험적 연구)

  • 이치우;김지훈;김시범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.395-402
    • /
    • 2001
  • The gasoline engine tends to high performance, fuel economy, small-sized. Therefore, it is necessary to solve the problems on thermal load, abnormal combustion, etc, in the engine, Thine film instantaneous temperature measurement probe was made. And the manufactural method of probe was established. The instantaneous surface temperatures in the constant volume combustion chamber were measured by this probe and the heat flux was obtained by Fourier analysis. The authors measured the wall temperature of combustion chamber and computed the heat flux through the cylinder wall in order to understand the combustion characteristics depending on height of probe. For achieving this goal, the thin film instantaneous temperature probe was developed for analyzing the instantaneous surface wall temperature and unsteady heat flux on the constant volume combustion chamber.

  • PDF

A Study on the Combustion Characteristics according to Evaporation rate of Methanol - Blended Fuel (메탄올 혼합 연료의 기화율 변화에 따른 연소특성에 관한 실험적 연구)

  • Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.2 no.2
    • /
    • pp.24-34
    • /
    • 1997
  • This paper describes the investigation of combustion characteristics of gasoline-methanol blend in constant volume combustion chamber. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaporating a blend fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deteriorated by decreasing surrounding temperature of fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion were deter orated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for methanol blend fuel was influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

Development of High Pressure & Temperature Constant Volume Chamber for Visualization Study of Fuel Spray and Combustion (연료 분무 및 연소 가시화 연구를 위한 고온 고압 정적 연소실 개발)

  • Kim, Kihyun
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.12-18
    • /
    • 2017
  • Diesel and gasoline engines will be used as main power system of automobiles. Recently, engine downsizing is widely applied to both gasoline and diesel engines in order to improve fuel economy and exhaust emissions. Engine downsizing means small engine combustion chamber with higher combustion pressure. Therefore, spray and combustion process should be investigated under these high pressure and temperature conditions. In this study, constant volume combustion chamber which enables easy optical access from six directions was developed. Combustion chamber was designed to resist maximum pressure of 15 MPa and maximum temperature of 2,000 K. Combustible pre-mixed mixture was introduced into combustion chamber and ignited by spark plugs. High pressure and temperature were implemented by combustion of pre-mixed mixture. Three initial conditions of different pressure and density were tested. High repeatability of combustion process was implemented which was proven by low standard deviation of combustion pressure.

A Study of Heat Flux on the Height of an Instantaneous Temperature Probe in a Constant Volume Combustion Chamber (정적 연소기에서 순간온도 프로브의 돌출높이에 따른 열유속에 관한 연구)

  • Lee, C.W.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.4
    • /
    • pp.216-223
    • /
    • 2003
  • In the production of internal combustion engines, there have been trends to develop the high performance engines with improved fuel efficiency, lighter weights and smaller sizes. This trends help to answer problems related to thermal load and abnormal combustion, etc. in these engines. In order to investigate these problems, a thin film-type probe and its manufacturing method for instantaneously measuring surface-temperatures have been proposed in this study, Instantaneous surface temperature of a constant volume combustion chamber was measured by this probe and heat flux was obtained by Fourier analysis. In order to thoroughly understand the characteristics of combustion, the authors measured the wall temperature of the combustion chamber and computed heat flux through a cylinder wall while varying the protrusion height of the probe have been measured. To achieve the above goals, a instantaneous temperature probe was developed, thereby making possible the analysis of the instantaneous temperature of wall surface and the detection of unsteady heat flux in the constant volume combustion chamber.

The Fuel Spray Structure of High Pressure Gasoline Injector in a Constant Volume Chamber (정적챔버내의 고압 가솔린 인젝터의 연료분무구조)

  • 귄의용;조남효
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.4
    • /
    • pp.10-17
    • /
    • 2000
  • This work presents an investigation of aerodynamic characteristics of fuel spray injected from a high pressure hollow cone swirl injector into a constant volume chamber. Laser tomography visualization was used to interrogate the fuel and air mixing characteristics and the effect of chamber pressure and temperature increase was analyzed, Preliminary results on spray development showed that mixing effect tends to increase with the increase of injection pressure and chamber gas pressure yielding a decrease of spray penetration and an attenuation of well-defined vortex structure. Topological analysis of the spray structure has been performed to initiate the understanding of mixing and vaporization process. For the present experimental conditions fuel injection pressure and chamber gas pressure appear as the dominant factors which govern the transient mixing characteristics. Moreover spray atmixation characteristics are improved by increasing chamber gas temperature.

  • PDF

A Study on the Combustion Characteristics of Methane-air Mixture in Constant Volume Combustion Chamber (정적 연소실내의 메탄-공기 혼합기의 연소 특성에 관한 연구)

  • 이창식;김동수;오군섭
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.4
    • /
    • pp.201-209
    • /
    • 1996
  • This study describes the combustion characteristics of methance-air mixture with various equivalence retio and initial conditions of mixture in constant volume combustion chamber. Combustion characteristics of methane-air mixture such as combustion pressure, combustion temperature, and heat release were investigated by the measurement of combustion pressure and temperature in the combustion chamber. The results show that maximum combustion pressure, gas temperature and rate of heat release have peaks at equivalence ratio of 1.1. Combustion duration is also the shortest at the equivalence ratio of 1.1 and it is shortened as initial mixture temperature increases.

  • PDF

Simulation for Performance Evaluation of Heat Pump Outdoor Unit in the Constant Temperature Chamber (항온챔버에서 히트펌프 실외기의 성능 평가를 위한 시뮬레이션)

  • Jong-Ryeol Kim
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.3
    • /
    • pp.140-146
    • /
    • 2023
  • A lot of research is being done to develop a high-efficiency heat pump to save energy. Among them, research to reduce or eliminate the phenomenon of frost occurring in the outdoor unit coil are being conducted at the same time. A constant temperature chamber that can be tested under the same conditions as natural conditions was constructed to conduct research that does not cause frost on the outdoor unit of the heat pump regardless of the season. The outdoor unit of the heat pump installed in the constant temperature chamber was simulated under the same natural conditions. As a result, it was confirmed that the mass flow rate of the refrigerant decreased as the outdoor temperature decreased, and the dryness of the refrigerant also increased linearly with the outdoor temperature.

The Effects of Chamber Temperature and Pressure on a GDI Spray Characteristics in a Constant Volume Chamber

  • Oh, Seun-Sung;Kim, Seong-Soo
    • Journal of Power System Engineering
    • /
    • v.18 no.6
    • /
    • pp.186-192
    • /
    • 2014
  • The spray structures under the stratified and homogeneous charge condition of a gasoline direct injection were investigated in a visualized constant volume chamber. The chamber pressure was controlled from 0.1 MPa to 0.9 MPa by the high pressure nitrogen and the chamber temperatures of $25^{\circ}C$, $60^{\circ}C$ and $80^{\circ}C$ were controlled by the band type heater. The fuel, iso-octane was injected by a 6-hole injector with the pressures of 7 MPa and 12 MPa. From the experiments results, it is confirmed that at lower chamber pressure, the penetration length and spray angle are mainly affected by the chamber temperature with the vaporization of the fuel droplets and generated vortices at the end region of the spray. And at higher chamber pressure, the penetration lengths at the end of the injection were about 50~60% of that at lower chamber pressure regardless of the chamber temperature and the effect of fuel injection pressure is larger than that of the chamber temperature which results from larger penetration lengths at higher fuel injection pressure than at lower fuel injection pressure regardless of the chamber temperatures.