• Title/Summary/Keyword: Constant Pressure System

Search Result 570, Processing Time 0.026 seconds

Development of a Control System for Uniform Application Rate on a Self-Propelled Boom Sprayer (붐방제기의 균일량 살포를 위한 제어시스템 개발)

  • 조성인;정창주;이동훈;이중용
    • Journal of Biosystems Engineering
    • /
    • v.21 no.4
    • /
    • pp.406-413
    • /
    • 1996
  • A control system for a self-propelled boom sprayer to spray at uniform application rate was developed and evaluated. The ground speed of the sprayer was converted into voltage. The voltage was used as an input signal. Output signal was current of a servo motor, that controlled application pressure of the sprayer with a feedback control system. Spraying was executed at the pressure of 20~55 psi and the speed of 0.640~0.696 km/hr and 1.040-1.131 km/hr. Although the pressure and the speed of sprayer were changed continuously, application rate was tried to keep a nearly constant amount of 666.67 L/ha. This result showed that the developed control system for uniform application rate was adoptable for the self-propelled sprayer.

  • PDF

Reexamination and Derivation of Empirical Dynamic Model for a Hydraulic Bleed-Off Circuit (유압 블리드-오프 회로의 특성 재검토 및 실험적 동특성 모델링)

  • Jeong, Heon-Sul;Lee, Gwang-Heon;Kim, Hyeong-Ui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1552-1564
    • /
    • 2002
  • Meter-in, meter-out and bleed-off circuits are widely utilized in order to adjust the speed of a hydraulic actuator by using a flow control valve and in order to regulate the pressure of a hydraulic volume by using a simple on-off valve. In these circuits, a relief valve serves either to maintain constant system pressure or to protect the system from over-pressure loading. The relief valve of a bleed-off circuit is the second case frequently undergoing on-off action during operation. It makes the analysis of the pressure control characteristics of the circuit highly difficult. In this paper, steady-state flow rate, pressure, heat loss and efficiency of the three circuits are reexamined and basic experiments far obtaining the characteristics of a pump and relief valve are conducted. Finally, simple empirical first-order dynamic models of decreasing and increasing pressure were separately proposed and verified by comparison with experiment. As the result, the basis for the theoretical analysis of the pressure control characteristics of a bleed-off circuit using a simple on-off valve is established.

Pulsation Dampener for Diaphragm Metering Pump (다이아프램 정량펌프의 맥동감쇄 장치)

  • 윤승원
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1143-1147
    • /
    • 2004
  • A mechanical type pulsation dampener for the diaphragm metering pump has been developed. The pulsation pressure is an inevitable phenomenon for the positive displacement pump such as cam operated or solenoid operated metering pump. The pulsation pressure of the metering pump could be the noise source and would be harmful for the piping system which delivers hydraulic fluid. Developed pulsation dampener consists of three coil springs which have different spring constant and height each other. Depending on pressure magnitude of the piping system, total hydraulic pressure on damping diaphragm which compresses coil springs will be varied. Force equilibrium of the pulsation dampener will be set by manual by adjusting the compressed coil spring height. During the discharge stroke, pulsation dampener stores potential energy that is released as the pumping diaphragm back to an initial position during the suction stroke.

  • PDF

A Study on the Fabrication and Structural Evaluation of AlN Thin Films

  • Han, Seung-Oh;Han, Chang-Suk
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.23 no.2
    • /
    • pp.69-74
    • /
    • 2010
  • AlN thin films were deposited by using a two-facing-targets type sputtering system (TFTS), and their deposition characteristics, microstructure and texture were investigated. Total gas pressure was kept constant at 0.4 Pa and the partial pressures of nitrogen, $PN_2$ (($N_2$ pressure)/($Ar+N_2$ pressure)) varied from 0 to 0.4 Pa. The texture of the film cross-sections and surface morphology were observed by field emission scanning electron microscope (FE-SEM). The crystallographic orientation of the films were analyzed by X-ray diffraction (XRD). Deposition of AlN film depends on $N_2$ partial pressure. The best preferred oriented AlN thin films can be deposited at a nitrogen partial pressure of $PN_2$ = 0.52. As-deposited AlN films show preferred orientation and columnar structure, and the grAlN size of AlN films increases with increasing sputtering current.

A comparison of steam turbine control systems according to adoption of turbine bypass system (바이패스 시스템 체용 유무에 따른 증기 터빈제어 비교)

  • Choi, I.K.;Kim, J.A.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2342-2344
    • /
    • 2000
  • Many years ago, most of thermal power plants built in this country were of subcritical pressure, of medium or small size, of constant pressure operation, of drum type steam generator. But, nowadays, almost all of them were of high efficiency, of supercritical pressure, of great capacity(about 500MW), of sliding pressure operation, of once through type steam generator. Presently built once through boiler introduces turbine bypass systems to variable pressure operation which eliminates unexpected materials in boiler tube during startup, minimizes fuel loss by short startup period, eventually improves total efficiency and power system stability

  • PDF

A Pilot-Scale Microfiltration/Ultrafiltration system for Drinking Water Treatment (상수처리를 위한 파일롯 규모의 정밀여과/한외여과 시스템)

  • Kim, Hanseung;Oh, Jeongik;Kim, Chunghwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.6
    • /
    • pp.770-777
    • /
    • 2004
  • Three pilot-scale membrane systems were operated using lake water as influent in this study. Microfiltration (MF) membrane with pore size of 0.01 m was used in Systen I of which filtration mode was set at constant pressure of $1kgf/cm^2$. Ultrafiltration (UF) membranes with molecular cutoff (MWCO) of 80,000 and 13,000 were used in System II-1 and II-2, respectively. Constant flow mode was applied at the range between 0.7 and $1.5m^3/m^2{\cdot}d$ (average of $1.1m^3/m^2${\cdot}d) for System II-1 and between 0.37 and $1.65m^3/m^2{\cdot}d$ (average of $1.18m^3/m^2{\cdot}d$) for System II-2. In System I, the flux changed from $1m^3/m^2{\cdot}d$ to $0.2m^3/m^2{\cdot}d$ during the operation time of 5 months. System II showed recovery of 94% under the allowable maximum pressure of $3kgf/cm^2$ during the same operation period. From these results, the efficient operation was observed in constant flow mode with respect to filtration time and recovery. Average filtrate turbidity showed 0.0071 NTU in System I and 0.0054 NTU in System II, which implied that high turbidity removal was obtained in both MF and UF systems with no significant difference between MF and UF. From the fact that membrane flux depends largely on membrane type and operation mode, a guideline of optimum design and operation should be suggested for application of membrane systems to full scale water treatment.

A Study on the Development of Polishing Robot System Attached to Machining Center for Curved Surface Die (곡면금형 연마를 위한 머시닝센터 장착형 연마로봇 시스템 개발에 관한 연구)

  • Lee, Min-Cheol;Ha, Deok-Ju
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.163-177
    • /
    • 1999
  • Polishing work for a curved surface die demands simple and repetitive operations and requires much time while it demands also high precision. Therefore it is operated by a skilled worker in handiwork. However the workers avoid gradually a polishing work because of the poor environmental conditions such as dust and noise. In order to reduce the polishing time and to alleviate the problem of shortage of skilled workers, an automatic polishing robot system which is composed of a polishing robot with two degrees of freedom motion and pneumatic system is developed, and it is attached to machining center with three degrees of freedom. The system keeps the polishing tool vertically on the surface of die and maintains constant pneumatic pressure. The polishing robot with DSP(digital signal processor) controller is controlled by sliding mode control. A synchronization between machining center and polishing robot is accomplished by using M code of machining center. A performance experiment for polishing work is executed by the developed automatic polishing robot system. The result shows that the developed automatic polishing robot has a good performance and well polished workpiece surface is obtained.

  • PDF

Effect of Design Parameters of Modulating Valve and Hydraulic Clutch on Shift Quality of a Power Shuttle Transmission (모듈레이팅 밸브 및 유압 클러치의 설계 변수가 전후진 파워시프트 변속기의 변속 품질에 미치는 영향)

  • 김경욱;정병학;박영준
    • Journal of Biosystems Engineering
    • /
    • v.28 no.3
    • /
    • pp.187-198
    • /
    • 2003
  • This study was conducted to investigate the effect of design parameters of modulating valve and hydraulic clutch on the shift quality of a power shuttle transmission using a computer simulation. Computer simulation models of a hydraulic control system and a power shuttle drive train were developed and verified by an experimental power train in a laboratory. The software EASY5 was used for the modeling and simulation of the power shuttle transmission. Results of the study were summarized as follows: For a good shift quality. it is required to reduce the transient torque transmitted to the output shaft of the transmission as much as possible. This may be achieved by reducing the modulating time and clutch pressure. It was found that the design parameters most significantly affecting the modulating time and clutch pressure were the spring constant and displacement of a load piston of the modulating valve, and the spring constant and damping of the clutch piston. The modulating time decreased as the spring constant increased and increased as the displacement of the load piston decreased. The transient torque decreased as the modulating time increased. However their relationships were not always linear. As the damping decreased, both the modulating pressure and time decreased, which also resulted in a decrease in the transient torque. The spring constant of the clutch piston affected the modulating time and the peak transient torque. As the spring constant of the clutch increased, the peak transient torque decreased.

Experimental Study on Turbulence and Pressure Drop Characteristics in a Rectangular Duct Fitted with Semicircular Ribs (반원 리브의 거칠기를 가진 사각덕트에서의 난류 및 마찰 특성에 관한 실험적 연구)

  • Nine, Md.J.;Lee, G.H.;Woo, J.S.;Chung, H.S.;Jeong, H.M.
    • Journal of Power System Engineering
    • /
    • v.15 no.5
    • /
    • pp.43-48
    • /
    • 2011
  • The article represents an experimental investigation on friction and turbulent flow characteristics of free airflow through a rectangular duct fitted with semicircular ribs of uniform height (e = 3.5 mm) on one principle wall. The aspect ratio of the rectangular duct was AR= 5 where the duct height (H) was of 30 mm. Four different rib pitches (P) of 28 mm, 35 mm, 42 mm and 49 mm were used for constant rib height to hydraulic diameter ratio (e/Dh = 0.07) and constant rib height to channel height ratio (e/H = 0.11). The experimental results show some significant effects on pressure drop as well as turbulent characteristics at various configurations among different numbers of rib arrangements varying Reynolds number in the range of 15000 to 30000. Pressure transducer and hot wire anemometer were used for data acquisition of this experiment.

A Study on the Behaviour of Ultra-High Pressure Diesel Spray by Electronic Hydraulic Fuel Injection System(II) (전자유압식 분사계에 의한 초고압 디젤분무의 거동에 관한 연구(II))

  • 장세호;안수길
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.182-190
    • /
    • 1998
  • Behaviour of ultra-high pressure diesel spray in a constant-volume pressure chamber was studied with injection pressure ranging from 20 to 160㎫. Sprays were observed by the right angle scattering method. As a result, the spray tip penetration is first proportional to a time, and after that, it is proportional to 0.52 of the time during at the time of injection pressure and back pressure increase. An empirical correlation was made for the parameters of injection pressure, air-fuel density ratio, spray tip distance, spray angle, jet angle of spray and max. spray width.

  • PDF