• Title/Summary/Keyword: Constant Pressure System

Search Result 570, Processing Time 0.021 seconds

Influence of Groove Location on Lubrication Characteristics of the Piston and Cylinder in a Linear Compressor (그루브 위치가 리니어 압축기용 피스톤과 실린더의 윤활특성에 미치는 영향)

  • Jeon, W.J.;Son, S.I.;Lee, H.;Kim, J.W.;Kim, K.W.
    • Tribology and Lubricants
    • /
    • v.32 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • In this paper hydrodynamic lubrication analysis is carried out to investigate the effects of groove location on the lubrication performance of a piston and cylinder system in a linear compressor. The rectangle shaped grooves having a constant groove depth and width are applied on the lubrication area of the piston. The Universal Reynolds equation is used to calculate the oil film pressure, and the Elrod algorithm with the finite different method is used to solve the governing equation. The JFO boundary condition is applied to predict cavitation regions. Transient analysis for different locations of the grooves on the piston is carried out using the typical operating condition of the linear compressor in order to estimate the variations of frictional power losses and minimum film thicknesses. When the grooves are applied on the lubrication area, both the frictional power loss and the minimum film thickness decrease. The frictional power loss can be reduced effectively, while maintaining a minimum film thickness to enable the piston operation without direct contact with the cylinder surface, by means of choosing a proper location of the grooves. The optimum location of the grooves to improve a lubrication performance depends on the operation condition or the system requirements specification.

Computational Analysis of Three-Dimensional Turbulent Flow Around Magnetically Levitated Train Configurations in Elevated Track Proximity (고가궤도에 근접한 자기부상열차 형상 주위의 3차원 난류유동에 대한 수치해석)

  • Maeng, J.S.;Yang, S.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.9-25
    • /
    • 1994
  • In the present study, the Reynolds-averaged Navier-Stokes equations, together with the equations of the $k-{\varepsilon}$ model of turbulence, were solved numerically in a general body-fitted coordinate system for three-dimensional turbulent flows around the six basic shapes of the magnetically levitated train(MAGLEV). The numerical computations were conducted on the MAGLEV model configurations to provide information on shapes of this type very near the elevated track at a constant Reynolds number of $1.48{\times}10^{6}$ based on the body length. The coordinate system was generated by numerically solving a set of Poisson equations. The convective transport equations were discretized using the finite-analytic scheme which employed analytic solutions of the locally-linearized equations. A time marching algorithm was employed to enable future extensions to be made to handle unsteady and fully-elliptic problems. The pressure-velocity coupling was treated with the SIMPLER-algorithm. Of particular interests were wall effect by the elevated track on the aerodynamic forces and flow characteristics of the six models calculated. The results indicated that the half-circle configuration with extended sides and with smooth curvature of sides was desirable because of the low aerodynamic forces and pitching moment. And it was found that the separation bubble was occured at wake region in near the elevated track.

  • PDF

Analysis of the Aluminum Extrusion Process Equipped with the Continuous Heat Treatment System

  • Lee, Bong-Sang;Cho, Young-Hee;Lee, Jeong-Min;Lim, Hak-Jin;Koo, Jar-Myung;Yoon, Bo-Hee;Lee, Tae-Hyuk;Lee, Jong-Hyeon
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.39-45
    • /
    • 2011
  • In this study, the heat flow of the plant scale aluminum extrusion process was investigated to establish optimum continuous heat treatment conditions. During the extrusion of 6061 aluminum alloy, processing parameters such as the extrusion pressure, speed and temperature histories of billets were logged as a function of time. The surface temperature of the billets increased at constant ram speed, while it decreased with decreases of the ram speed. In order to maintain the billet temperature within a solutionizing temperature range prior to the succeeding water quenching step, the ram speed or the temperature of the blower should be controlled. The temperature histories of the billets during the extrusion and hot air blowing processes were successfully simulated by using the velocity boundary model in ANSYS CFX. The methodology to design an optimum process by using a commercial simulation program is described in this study on the basis of the metallurgical validation results of the microstructural observation of the extrudates. The developed model allowed the advantages of taking into account the motion of the extrudate coupled with the temperature change based on empirical data. Calculations were made for the extrudate passing through the isothermal chamber maintained at appropriate temperature. It was confirmed that the continuous heat treatment system is beneficial to the productivity enhancement of the commercial aluminum extrusion industry.

Papers : Preliminary Design of Hybrid Rocket Based on HTPB Fuel (논문 : HTPB 연료를 사용한 하이브리드 로켓 기초설계)

  • Ha,Yun-Ho;Lee,Chang-Jin;Gwon,Sun-Tak
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.1
    • /
    • pp.124-131
    • /
    • 2002
  • In this study, a preliminary design code was developed for the initiation of HTPB/LOX hybrid rocket system. HTPB was assumed to have a constant regression rate. And initial input parameters; number of port, initial O/F ratio F/W ratio, and chamber pressure, were varied to analyze the effects on the performance and geometry of rocket system. The results showed a qualitatively good agreement with previous data. And it was revealed that there exists a number of design results that meet the mission requirements and that we could find an optimal design case if a proper constraint would be imposed. Thus, it is natural to account for the optimal algorithm during the design procedure and to consider more realistic and reliable formulations used for weight estimation of structural supports and accessories.

Isobaric Vapor-Liquid Equilibrium of 1-propanol and Benzene System at Subatmospheric Pressures (일정압력하에서 1-propanol/benzene 계의 기-액 상평형)

  • Rho, Seon-Gyun;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.56 no.2
    • /
    • pp.222-228
    • /
    • 2018
  • Benzene is one of the most widely used basic materials in the petrochemical industry. Generally, benzene exists as a mixture with alcohols rather than as a pure substance. Further, the alcohols-added mixtures usually exhibit an azeotropic composition. In this context, knowledge of the phase equilibrium behavior of the mixture is essential for its separation and purification. In this study, the vapor-liquid equilibrium data were measured in favor of a recirculating VLE apparatus under constant pressure for the 1 - propanol / benzene system. The measured vapor - liquid equilibrium data were also correlated by using the UNIQUAC and WILSON models and the thermodynamic consistency test based on the Gibbs/Duhem equation was followed. The results of the phase equilibrium experiment revealed RMSEs (Root Mean Square Error) and AADs (Average Absolute Deviation) of less than 0.05 for both models, indicating a good agreement between the experimental value and the calculated value. The results of the thermodynamic consistency test also confirmed through the residual term within ${\pm}0.2$.

An Study on Spray and Combustion Characteristics of Direct Injection LPG under Low Pressure Injection Condition (저압 분사조건에 따른 직접분사 LPG의 분무 및 연소특성 연구)

  • Hwang, Seong-Ill;Chung, Sung-Sik;Yeom, Jeong-Kuk;Lee, Jin-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • Liquefied petroleum gas is regarded as a promising alternative fuel as it is eco-friendly, has good energy efficiency and output performance, practically and has high cost competitiveness over competing fuels. In spark-ignition engine, direct injection technology improves engine volumetric efficiency apparently and operates engine using the stratified charge that has relatively higher combustion efficiency. This study designed a combustion chamber equipped with visualization system by applying gasoline direct injection engine principle. In doing so, the study recorded and analyzed ignition probability and flame propagation process of spark-ignited direct injection LPG in a digital way. The result can contribute as a basic resource widespread for spark-ignited direct injection LPG engine design and optimization extensively.

Evaluation of Polishing Performance Using The Improved Polishing Robot System Attached to Machining Center (머시닝센터 장착형 연마로봇의 성능 향상 및 연마 성능 평가)

  • Lee, Min-Cheol;Cho, Young-Gil;Lee, Man-Hyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.9
    • /
    • pp.179-190
    • /
    • 1999
  • To automate the polishing process, a polishing robot with two axes which is attached to a machining center with three axes has been developed by our previous research. This automatic polishing robot is able to keep the polishing tool normal to the curved surface of die and is able to maintain a constant pneumatic pressure. Therefore, in the case of a curved surface die, the surface roughness to be polished by the system with five axes is improved superior than the surface by a three-axis machining center. However, because the polishing robot was big and heavy, a polishing workspace was limited and then it was difficult to attach the robot to machining center. In this study, the smaller and lighter polishing robot than the previous has been designed to improve defects due to the magnitude and weight of the robot. And the sliding mode control ins applied to polishing robot to improve the tracking performance. To obtain switching parameters of sliding mode control, the signal compression method is used. Code separation program to separate the date for a three-axis machining center and a two-axis polishing robot from a five-axis NC data is improved for users to check conveniently the separated trajectory and to handle many data by using the graphic user interface. To evaluate the polishing performance of the developed robot, the polishing experiment for shadow mask was carried out. The result shows the automatic polishing robot has a good trajectory tracking performance and obtains a good polished workpiece efficiently under recommended polishing conditions.

  • PDF

Nonlinear Transformation of Long Waves at a Bottom Step (해저단에서의 장파의 비선형 변형)

  • Mrichina, Nina R.;Pelinovsky, Efim N.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.4 no.3
    • /
    • pp.161-167
    • /
    • 1992
  • We consider the preparation of long finite amplitude nondispersive waves over a step bottom between two regions of finite different depths. Two dimensional motion is assumed. with the wave crests parallel to the step, and irrotational flow in the inviscid fluid is considered. To describe the transformation of finite amplitude waves we use the finite-amplitude shallow-water equations, the conditions of mass flow conservation and pressure continuity at the cut above the step in Riemann's variables. The equations define four families of curves-characteristics on which the values of the Riemann's invariants remain constant and a system of two nonlinear equations that relates the amplitudes of incident reflected and transmitted waves. The system obtained is difficult to analyze in common form. Thus we consider some special cases having practical usage for tsunami waves. The results obtained are compared with the long wave theory and significant nonlinear effects are found even for quite small amplitude waves.

  • PDF

Residual Liquid Behavior Calculation for Vacuum Distillation of Multi-component Chloride System (다성분 염화물계 진공 증류의 잔류 액체 거동 계산)

  • Park, Byung Heung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.3
    • /
    • pp.179-189
    • /
    • 2014
  • Pyroprocessing has been developed for the purpose of resolving the current spent nuclear fuel management issue and enhancing the recycle of valuable resources. An electrolytic reduction of the pyroprocessing is a process to reduce oxides into metals using LiCl as an electrolyte and requires a post-treatment process due to the inclusion of residual salt in porous metal products. A vacuum distillation has been adopted for various molten salt systems and could be applied to the post-treatment process of the electrolytic reduction. The residual salt in the metal products includes LiCl, alkali chlorides, and alkaline earth chlorides. In this paper, vapor pressures of chlorides have been estimated and the composition changes on the residual liquid during the vacuum distillation process have been calculated. A model combining a material balance and vapor-liquid equilibrium relations has been proposed under a constant vapor discharging flow rate and liquid composition changes have been calculated using the vapor pressures with respect to a dimensionless time. The behaviors have been compared with temperature and molten salt composition changes to simulate the process condition variation. The distillation of the residual salt has been dominated by LiCl which is the main component of the salt and CsCl of which vapor pressure is higher than that of LiCl would be readily removed. RbCl exhibits similar vapor pressure with LiCl and maintains its composition. However, $SrCl_2$ and $BaCl_2$ of which vapor pressures are much lower than that of LiCl are concentrated with time and expected to be possibly precipitated during the distillation when the initial compositions are increased.

Identification of the Sectional Distribution of Sound Source in a Wide Duct (넓은 덕트 단면내의 음원 분포 규명)

  • Heo, Yong-Ho;Ih, Jeong-Guon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-93
    • /
    • 2014
  • If one identifies the detailed distribution of pressure and axial velocity at a source plane, the position and strength of major noise sources can be known, and the propagation characteristics in axial direction can be well understood to be used for the low noise design. Conventional techniques are usually limited in considering the constant source characteristics specified on the whole source surface; then, the source activity cannot be known in detail. In this work, a method to estimate the pressure and velocity field distribution on the source surface with high spatial resolution is studied. The matrix formulation including the evanescent modes is given, and the nearfield measurement method is proposed. Validation experiment is conducted on a wide duct system, at which a part of the source plane is excited by an acoustic driver in the absence of airflow. Increasing the number of evanescent modes, the prediction of pressure spectrum becomes further precise, and it has less than -25 dB error with 26 converged evanescent modes within the Helmholtz number range of interest. By using the converged modal amplitudes, the source parameter distribution is restored, and the position of the driver is clearly identified at kR = 1. By applying the regularization technique to the restored result, the unphysical minor peaks at the source plane can be effectively suppressed with the filtering of the over-estimated pure radial modes.