• Title/Summary/Keyword: Constant Pressure System

Search Result 570, Processing Time 0.033 seconds

Two-dimensional curved panel vibration and flutter analysis in the frequency and time domain under thermal and in-plane load

  • Moosazadeh, Hamid;Mohammadi, Mohammad M.
    • Advances in aircraft and spacecraft science
    • /
    • v.8 no.4
    • /
    • pp.345-372
    • /
    • 2021
  • The analysis of nonlinear vibrations, buckling, post-buckling, flutter boundary determination and post-flutter behavior of a homogeneous curved plate assuming cylindrical bending is conducted in this article. Other assumptions include simply-supported boundary conditions, supersonic aerodynamic flow at the top of the plate, constant pressure conditions below the plate, non-viscous flow model (using first- and third-order piston theory), nonlinear structural model with large deformations, and application of mechanical and thermal loads on the curved plate. The analysis is performed with constant environmental indicators (flow density, heat, Reynolds number and Mach number). The material properties (i.e., coefficient of thermal expansion and modulus of elasticity) are temperature-dependent. The equations are derived using the principle of virtual displacement. Furthermore, based on the definitions of virtual work, the potential and kinetic energy of the final relations in the integral form, and the governing nonlinear differential equations are obtained after fractional integration. This problem is solved using two approaches. The frequency analysis and flutter are studied in the first approach by transferring the handle of ordinary differential equations to the state space, calculating the system Jacobin matrix and analyzing the eigenvalue to determine the instability conditions. The second approach discusses the nonlinear frequency analysis and nonlinear flutter using the semi-analytical solution of governing differential equations based on the weighted residual method. The partial differential equations are converted to ordinary differential equations, after which they are solved based on the Runge-Kutta fourth- and fifth-order methods. The comparison between the results of frequency and flutter analysis of curved plate is linearly and nonlinearly performed for the first time. The results show that the plate curvature has a profound impact on the instability boundary of the plate under supersonic aerodynamic loading. The flutter boundary decreases with growing thermal load and increases with growing curvature.

Piezoelectric Properties of PMN-PNN-PZT Ceramics and the Simulation of Ultrasonic Cleaner

  • Sujin Kang;Ju Hyun Yoo;Sun A Whang;Jae Gyu Lee;Jong Hyeon Lee;Ji Hoon Lee;Dae Yeol Hwang;Sua Kim;Seong Min Lee;Han Byeol Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.2
    • /
    • pp.191-196
    • /
    • 2023
  • In this paper, for the application of ultrasonic cleaners for cleaning dentures and transparent braces, Pb(Mn1/3Nb2/3)O3-Pb(Ni1/3 Nb2/3)O3-Pb(Zr,Ti)O3 [PMN-PNN-PZT] system ceramics were manufactured and their dielectric and piezoelectric properties were investigated. Overall the best properties suitable for the device applications such as ultrasonic cleaner were obtained from the ceramics sintered at 920℃: bulk density of 7.8 g/cm3, the dielectric constant (εr) of 1,689, piezoelectric charge constant (d33) of 433 pC/N, planar electromechanical coupling factor (kp) of 0.64, mechanical quality factor (Qm) of 835, S11E of 13.37 (10-12 N/m2), and Curie temperature of 315℃ By using the physical properties of this composition, the ultrasonic cleaner was designed and simulated using the commercial ATILA software. For the three-layered ceramics with the dimension of 25 mm × 25 mm × 2.5mm, an excellent displacement of 8.998 10-3 m) and the sound pressure of 147.68 dB were recorded.

Characteristics of $TiH_2$ under High Pressure (고압하에서 $TiH_2$의 특성화 연구)

  • Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.72-78
    • /
    • 1992
  • The Earth outer core accomodates moderately considerable amount of lighter elements than pure iron itself. Hydrogen is one of the possible candidates of minor constituents in the outer core. It would be worth while to extend for the pressure effect on the solubility of hydrogen in the metal-hydrides including iron hydride. In view of hydrogen being one of the potential substitutes for petroleum, searching a more efficient way for storing hydrogen in the form of hydrides is of considerable value. For two purposes, $TiH_2$was selected among lot of hydrides for its characteristics under pressure and temperature. There have been two kinds of experiment carried out on $TiH_2$ under different experimental conditions. As one of these attempts, polycrystalline $TiH_2$ was loaded up to 15 GPa stepwise at the constant temperature 500${\circ}$ using a piston-cylinder diamond anvil cell equipped with a miniature furnace of an electric power supply. The X-ra diffraction technique was employed on the quenched samples after the simultaneous high pressure and temperature treatments. During these high pressure-temperature runs, and irreversible phase of $TiH_2$ has been observed at the pressures higher than 11.3 GPa, which would be assigned to the orthorhombic crystal system as one of the new phase(s) of $TiH_2$. Molar volume change on this phase transition is ∼10%.

  • PDF

Quality Changes during Storage of Low Salt Fermented Anchovy treated with High Hydrostatic Pressure (초고압 처리한 멸치젓의 저장 중 품질 변화)

  • Lim, Sang-Bin;Jwa, Mi-Kyung;Mok, Chul-Kyoon;Woo, Gun-Jo
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.373-379
    • /
    • 2000
  • Low salt fermented anchovy was stored at $25^{\circ}C$ for a period of 20 days from the time of ultra-high pressure treatment under different operating conditions, such as magnitude of pressure($(200{\sim}500\;MPa)$, temperature$(20{\sim}50^{\circ}C)$ and treatment time$(5{\sim}20\;min)$ with viable cell count(VCC) and quality assessments conducted at regular intervals. VCC decreased logarithmically during storage. Lower values of VCC in the treated samples were observed compared to the untreated. A gradual increase in peroxide value was noticed during storage, compared to those of the untreated which showed a sudden rise. Thiobarbituric acid value decreased initially and remained at that level before rising almost exponentially between 12 and 20 days. Volatile basic nitrogen increased gradually during storage. Amino nitrogen remained almost constant up to 20 days, regardless of any conditions investigated. High pressure treatment maintained better quality during storage at $25^{\circ}C$ by reducing the viable cell count in low salt fermented anchovy.

  • PDF

A Feasibility Test on an Artificial Recharge System for one Representative Greenhouse Complex Zone, Korea (시설농업지역 지하수 인공함양 실증시험 연구)

  • Lee, Byung Sun;Myoung, Wooho;Oh, Sebong;Jun, Seong-Chun;Piao, Jize;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • This study was conducted to examine an artificial recharge system, which was considered to be an alternative for securing additional groundwater resources in a high-density greenhouse region. An injection well with a depth of 14.0 m was placed in an alluvial plain of the zone. Eight monitoring wells were placed in a shape of dual circles around the injection well. Aquifer tests showed that the aquifer was comprised with high-permeable layer with hydraulic conductivities of 1.5×10-3~2.4×10-2 cm/sec and storage coefficients of 0.07~0.10. A step injection test resulted in a specific groundwater-level rising (Sr/Q) values of 0.013~0.018 day/㎡ with 64~92% injection efficiencies. Results of the constant-rate injection test with an optimal injection rate of 100 ㎥/day demonstrated an enormous storage capacity of the alluvial aquifer during ten experimental days. To design an optimal recharge system for an artificial recharge, the high-permeable layer should be isolated by dual packers and suitable pressure should be applied to the injection well in order to store water. An anisotropy ratio of the alluvial aquifer was evaluated to be approximately 1.25 : 1 with an anisotropy angle of 71 degrees, indicating intervals among injection wells are almost the same.

Implementation of a Mixing-Ratio Control System for Two-Component Liquid Silicone Mixture (이액형 액상실리콘 재료의 혼합비율 제어 시스템 개발)

  • Choo, Seong-Min;Kim, Young-Min;Lee, Keum-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.688-694
    • /
    • 2018
  • The mixture ratio of two-component liquid silicone is important for the inherent physical characteristics of the finished product. Therefore, it is necessary to uniformly control the ratio of the main material and the sub-material. In this paper, a mixing-ratio control system was designed, which consists of a digital flow meter and a flow control system to measure the flow rate of the raw materials and a pumping system to maintain constant pressure and transfer of the raw materials. In addition, a program was developed to control the organic interlocking and mixing ratio. For the verification of the developed system, we compared the actual weight of raw material with the value measured by the flow meter during pumping, and we measured the physical properties of the mixed material by making test samples with and without the application of the mixing-ratio improvement algorithm. The measured value was close to the reference value with a hardness range of 46-47 and tensile strength of 9.3-9.5 MPa. These results show that the mixing ratio of the liquid silicone is controlled within an error range of ${\pm}0.5%$.

A Study on Biofilter for Hydrogen Sulfide Removal (황화수소 제거를 위한 Biofilter에 관한 연구)

  • Bin, Jeong-In;Lee, Byeong-Heon;Kim, Jung-Gyun;Gwon, Seong-Hyeon;Kim, Sang-Gyu;Lee, Min-Gyu
    • Journal of Environmental Science International
    • /
    • v.10 no.4
    • /
    • pp.287-292
    • /
    • 2001
  • A packed bed of volcanic rock was used as deodorizing material to remove hydrogen sulfide($H_2$S) from air in a laboratory-scale column, and was inoculated with Thiobacillus sp. as $H_2S$ oxidizer. The effects of volcanic rock particle size distribution on system pressure drop were examined. Various tests have been conducted to evaluate the effect of $H_2S$ inlet concentration and CBCT(Empty Bed Contact Time) on $H_2S$ elimination. The pressure drop for particles of size range from 5.6 to 10 mm was 14 mm$H_2S$/m at a representative gas velocity of 0.25m/s. Biofilter using scoria and Thiobacillus sp. could get the stable removal efficiencies more than 99.9% under $H_2S$ inlet concentrations in the range from 30 to 1,100ppm at a constant gas flow rate of $15.2{\ell}$/min. $H_2S$ removal efficiencies greater than 99% were observed as long as EBCT was longer than 8sec at the 250ppm of $H_2S$ inlet concentration. When EBCT was reduced to 5.5 sec, $H_2S$ removal efficiency decreased by about 12 percent. The maximum $H_2S$ elimination capacity was determined to be 269g-$H_2S/m^3{\cdot}hr$.

  • PDF

Electrical mechanism analysis of $Al_2O_3$ doped zinc oxide thin films deposited by rotating cylindrical DC magnetron sputtering (원통형 타겟 형태의 DC 마그네트론 스퍼터링을 이용한 산화 아연 박막의 전기적 기제에 대한 분석)

  • Jang, Juyeon;Park, Hyeongsik;Ahn, Sihyun;Jo, Jaehyun;Jang, Kyungsoo;Yi, Junsin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.55.1-55.1
    • /
    • 2010
  • Cost efficient and large area deposition of superior quality $Al_2O_3$ doped zinc oxide (AZO) films is instrumental in many of its applications including solar cell fabrication due to its numerous advantages over ITO films. In this study, AZO films were prepared by a highly efficient rotating cylindrical dc magnetron sputtering system using AZO target, which has a target material utilization above 80%, on glass substrates in argon ambient. A detailed analysis on the electrical, optical and structural characteristics of AZO thin films was carried out for solar cell application. The properties of films were found to critically depend on deposition parameters such as sputtering power, substrate temperature, working pressure, and thickness of the films. A low resistivity of ${\sim}5.5{\times}10-4{\Omega}-cm$ was obtained for films deposited at 2kW, keeping the pressure and substrate temperature constant at 3 mtorr and $230^{\circ}C$ respectively, mainly due to an increase in carrier mobility and large grain size which would reduce the grain boundary scattering. The increase in carrier mobility with power can be attributed to the columnar growth of AZO film with (002) preferred orientation as revealed by XRD analysis. The AZO films showed a high transparency of>87% in the visible wavelength region irrespective of deposition conditions. Our results offers a cost-efficient AZO film deposition method which can fabricate films with significant low resistivity and high transmittance that can find application in thin-film solar cells.

  • PDF

Black Silicon of Pyramid Structure Formation According to the RIE Process Condition (RIE 공정 조건에 의한 피라미드 구조의 블랙 실리콘 형성)

  • Jo, Jun-Hwan;Kong, Dae-Young;Cho, Chan-Seob;Kim, Bong-Hwan;Bae, Young-Ho;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.207-212
    • /
    • 2011
  • In this study, pyramid structured black silicon process was developed in order to overcome disadvantages of using wet etching to texture the surface of single crystalline silicon and using grass/needle-like black silicon structure. In order to form the pyramidal black silicon structure on the silicon surface, the RIE system was modified to equip with metal-mesh on the top of head shower. The process conditions were : $SF_6/O_2$ gas flow 15/15 sccm, RF power of 200 W, pressure at 50 mTorr ~ 200 mTorr, and temperature at $5^{\circ}C$. The pressure did not affect the pyramid structure significantly. Increasing processing time increased the size of the pyramid, however, the size remained constant at 1 ${\mu}M$ ~ 2 ${\mu}M$ between 15 minutes ~ 20 minutes of processing. Pyramid structure of 1 ${\mu}M$ in size showed to have the lowest reflectivity of 7 % ~ 10 %. Also, the pyramid structure black silicon is more appropriate than the grass/needle-like black silicon when creating solar cells.

An Experimental Study on the Spray and Lean Combustion Characteristics of Bio-enthanol-Gasoline Blended Fuel of GDI (직접분사식 바이오에탄올-가솔린 혼합연료의 분무 및 희박연소 특성에 관한 실험적 연구)

  • Park, Gi-Young;Kang, Seok-Ho;Kim, In-Gu;Lim, Cheol-Soo;Kim, Jae-Man;Cho, Yong-Seok;Lee, Seong-Wock
    • Journal of ILASS-Korea
    • /
    • v.19 no.3
    • /
    • pp.115-122
    • /
    • 2014
  • As a demand for an automobile increases, air pollution and a problem of the energy resources come to the fore in the world. Consequently, governments of every country established ordinances for green-house gas reduction and improvement of air pollution problem. Especially, as international oil price increases, engine using clean energy are being developed competitively with alternative transportation energy sources development policy as the center. Bio ethanol, one of the renewable energy produced from biomass, gained spotlight for transportation energy sources. Studies are in progress to improve fuel supply methods and combustion methods which are key features, one of the engine technologies. DI(Direct Injection), which can reduce fuel consumption rate by injecting fuel directly into the cylinder, is being studied for Green-house gas reduction and fuel economy enhancement at SI(Spark Ignition). GDI(Galoine Direct Injection) has an advantage to meet the regulations for fuel efficiency and $CO_2$ emissions. However it produces increased number of ultrafine particles, that yet received attention in the existing port-injection system, and NOX. As fuel is injected into the cylinder with high-pressure, a proper injection strategy is required by characteristics of a fuel. Especially, when alcohol type fuel is considered. In this study, we tried to get a base data bio-ethanol mixture in GDI, and combustion for optimization. We set fuel mixture rate and fuel injection pressure as parameters and took a picture with a high speed camera after gasoline-ethanol mixture fuel was injected into a constant volume combustion chamber. We figured out spraying characteristic according to parameters. Also, we determine combustion characteristics by measuring emissions and analyzing combustion.