• Title/Summary/Keyword: Constant Pressure System

Search Result 570, Processing Time 0.03 seconds

Measurement of Dynamic Strains on Composite T-Joint Subjected to Hydrodynamic Ram Using PVDF Sensors (PVDF 센서를 이용한 수압램 하중을 받는 복합재 T-Joint의 동적 변형률 측정)

  • Go, Eun-Su;Kim, Dong-Geon;Kim, In-Gul;Woo, Kyeongsik;Kim, Jong-Heon
    • Composites Research
    • /
    • v.31 no.5
    • /
    • pp.238-245
    • /
    • 2018
  • The hydrodynamic ram (HRAM) phenomenon is one of the main types of ballistic battle damages of a military aircraft and has great importance to airframe survivability design. The HRAM effect occurs due to the interaction between the fluid and structure, and damage can be investigated by measuring the pressure of the fluid and the dynamic strains on the structure. In this paper, HRAM test of a composite T-Joint was performed using a ram simulator which can generate HRAM pressure. In addition, calibration tests of PVDF sensor were performed to determine the circuit capacitance and time constant of the measurement system. The failure behavior of the composite T-Joint due to HRAM pressure was examined using the strain gauges and a PVDF sensor which were attached to the surface of the composite T-Joint.

An innovative approach for the numerical simulation of oil cooling systems

  • Carozza, A.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.169-182
    • /
    • 2015
  • Aeronautics engine cooling is one of the biggest problems that engineers have tried to solve since the beginning of human flight. Systems like radiators should solve this purpose and they have been studied extensively and various solutions have been found to aid the heat dissipation in the engine zone. Special interest has been given to air coolers in order to guide the air flow on engine and lower the high temperatures achieved by the engine in flow conditions. The aircraft companies need faster and faster tools to design their solutions so the development of tools that allow to quickly assess the effectiveness of an cooling system is appreciated. This paper tries to develop a methodology capable of providing such support to companies by means of some application examples. In this work the development of a new methodology for the analysis and the design of oil cooling systems for aerospace applications is presented. The aim is to speed up the simulation of the oil cooling devices in different operative conditions in order to establish the effectiveness and the critical aspects of these devices. Steady turbulent flow simulations are carried out considering the air as ideal-gas with a constant-averaged specific heat. The heat exchanger is simulated using porous media models. The numerical model is first tested on Piaggio P180 considering the pressure losses and temperature increases within the heat exchanger in the several operative data available for this device. In particular, thermal power transferred to cooling air is assumed equal to that nominal of real heat exchanger and the pressure losses are reproduced setting the viscous and internal resistance coefficients of the porous media numerical model. To account for turbulence, the k-${\omega}$ SST model is considered with Low- Re correction enabled. Some applications are then shown for this methodology while final results are shown in terms of pressure, temperature contours and streamlines.

Thermal, Tribological, and Removal Rate Characteristics of Pad Conditioning in Copper CMP

  • Lee, Hyo-Sang;DeNardis, Darren;Philipossian, Ara;Seike, Yoshiyuki;Takaoka, Mineo;Miyachi, Keiji;Furukawa, Shoichi;Terada, Akio;Zhuang, Yun;Borucki, Len
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.67-72
    • /
    • 2007
  • High Pressure Micro Jet (HPMJ) pad conditioning system was investigated as an alternative to diamond disc conditioning in copper CMP. A series of comparative 50-wafer marathon runs were conducted at constant wafer pressure and sliding velocity using Rohm & Haas IC1000 and Asahi-Kasei EMD Corporation (UNIPAD) concentrically grooved pads under ex-situ diamond conditioning or HPMJ conditioning. SEM images indicated that fibrous surface was restored using UNIPAD pads under both diamond and HPMJ conditioning. With IC1000 pads, asperities on the surface were significantly collapsed. This was believed to be due to differences in pad wear rates for the two conditioning methods. COF and removal rate were stable from wafer to wafer using both diamond and HPMJ conditioning when UNIPAD pads were used. Also, HPMJ conditioning showed higher COF and removal rate when compared to diamond conditioning for UNIPAD. On the other hand, COF and removal rates for IC1000 pads decreased significantly under HPMJ conditioning. Regardless of pad conditioning method adopted and the type of pad used, linear correlation was observed between temperature and COF, and removal rate and COF.

Cardioprotective Potency of the Antioxidante Amifostine in the Ischemic and Reperfused Isolated Rat Heart (항산화제 Amifostine의 허혈 및 재관류시 흰쥐 적출심장의 심근 보호기능)

  • 허강배;천수봉;김송명
    • Journal of Chest Surgery
    • /
    • v.31 no.9
    • /
    • pp.845-854
    • /
    • 1998
  • Background: S-2-(3 aminoprophlamino) ethylphosphorothioic acid(WR-2721) is one of the radical scavenging thiols. We tested its protective effects in the reperfused heart. Material and Method: The experimental setup was the constant pressure Langendorffs perfusion system. We investigated the radical scavenging properties of this compound in isolated rat hearts which were exposed to 20 minutes ischemia and 20 minutes reperfusion. Four experimental groups were used:group I, control, Amifostine 50 mg(1 mL) peritoneal injection 30 minutes before ischemia(group II), Amifostine 10 mg(0.2 mL) injection during ischemia through coronary artery(group III),and Amifostine 50 mg(1 mL) peritoneal injection 2 hrs before ischemia(group IV). The experimental parameters were the levels of latate, CK-MB, and adenosine deaminase(ADA) in frozen myocardium, the quantity of coronary flow,and left ventricular developed pressure, and it's dp/dt. Statistical analysis was performed using repeated measured analysis of variance and student t-test. Result: The coronary flow of group II and IV were less than group I and III at equilibrium state but recovery of coronary flow at reperfusion state of group II, III, and IV were more increased compared with group I. The change of systolic left ventricular devoloping pressure of group II and IV were less than control group at equilibrium state, which seemed to be the influence of the pharmacological hypotensive effect of amifostine. But it was higher compared with group I at reperfusion state. The lactic acid contents of group II were less than control group in frozen myocardium.(Group I was 0.20 0.29 mM/g vs Group II, which was 0.10 0.11 mM/g). The quantity of CK-MB in myocardial tissue was highest in group IV (P=0.026 I: 120.0 97.8 U/L vs IV: 242.2 79.15 U/L). The adenosine deaminase contents in the coronary flow and frozen myocardium were not significantly different among each group. Conclusion: Amifostine seemed to have significant cardioprotective effect during ischemia and reperfusion injuries of myocardium.

  • PDF

Development of Gas Turbine Engine Simulation Program Based on CFD (CFD 기반 가스터빈 엔진 모사 코드 개발)

  • Jin, Sang-Wook;Kim, Kui-Soon;Choi, Jeong-Yeol;Ahn, Iee-Ki;Yang, Soo-Seok;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.42-53
    • /
    • 2009
  • Gas turbine engine simulation program has been developed. In compressor and turbine, 2-D NS implicit code is used with k-$\omega$ SST turbulent model. In combustor, 0-D lumped method chemical equilibrium code is adopted under the limitations, the products are only 10 species of molecular and air-fuel is perfectly mixed state with 100% combustion efficiency at constant pressure. Fluid properties are shared on interfaces between engine components. The outlet conditions of compressor have been used as the inlet condition of combustor. The inlet condition of turbine comes from the compressor The back pressure in compressor outlet is transferred by the inlet pressure of turbine. Unsteady phenomena at rotor-stator in compressor and turbine is covered by mixing-plane method. The state of engine can be determined only by given inlet condition of compressor, outlet condition of turbine, equivalence ratio and rotating speed.

Analytical Study on Dynamic Characteristics of Hydraulic Cylinder Applied to the Vehicle Holding Device for Launch Vehicle (발사체용 지상고정장치 구동유압실린더의 운동특성에 관한 해석적 연구)

  • Lee, Jaejun;Park, Sangmin;Yang, Seongpil;Kim, Daerae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.44-50
    • /
    • 2017
  • Vehicle Holding Device(VHD) has a role that holding the launch vehicle on its launch pad until the engine therust reaches a steady condition. The analytical study of shape parameters and dynamic characteristics of hydraulic cylinders is carried out. The contraction of cylinder is considered as the major factor of releasing mechanism. Through the analysis, the decreasing of cylinder slit size and increasing initial charging pressure increase the contraction force. Through the transient analysis, cylinder load, displacement and inner pressure distribution are confirmed. The cylinder contraction force is converged to the cylinder external force when the cylinder starts to move. Also, the pressure distribution in the hydraulic cylinder is constant.

Effects of macroporosity and double porosity on noise control of acoustic cavity

  • Sujatha, C.;Kore, Shantanu S.
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.3
    • /
    • pp.351-366
    • /
    • 2016
  • Macroperforations improve the sound absorption performance of porous materials in acoustic cavities and in waveguides. In an acoustic cavity, enhanced noise reduction is achieved using porous materials having macroperforations. Double porosity materials are obtained by filling these macroperforations with different poroelastic materials having distinct physical properties. The locations of macroperforations in porous layers can be chosen based on cavity mode shapes. In this paper, the effect of variation of macroporosity and double porosity in porous materials on noise reduction in an acoustic cavity is presented. This analysis is done keeping each perforation size constant. Macroporosity of a porous material is the fraction of area covered by macro holes over the entire porous layer. The number of macroperforations decides macroporosity value. The system under investigation is an acoustic cavity having a layer of poroelastic material rigidly attached on one side and excited by an internal point source. The overall sound pressure level (SPL) inside the cavity coupled with porous layer is calculated using mixed displacement-pressure finite element formulation based on Biot-Allard theory. A 32 node, cubic polynomial brick element is used for discretization of both the cavity and the porous layer. The overall SPL in the cavity lined with porous layer is calculated for various macroporosities ranging from 0.05 to 0.4. The results show that variation in macroporosity of the porous layer affects the overall SPL inside the cavity. This variation in macroporosity is based on the cavity mode shapes. The optimum range of macroporosities in poroelastic layer is determined from this analysis. Next, SPL is calculated considering periodic and nodal line based optimum macroporosity. The corresponding results show that locations of macroperforations based on mode shapes of the acoustic cavity yield better noise reduction compared to those based on nodal lines or periodic macroperforations in poroelastic material layer. Finally, the effectiveness of double porosity materials in terms of overall sound pressure level, compared to equivolume double layer poroelastic materials is investigated; for this the double porosity material is obtained by filling the macroperforations based on mode shapes of the acoustic cavity.

Analysis of load data for developing a self-propelled underground crop harvester during potato harvesting

  • Min Jong Park;Seung Min Baek;Seung Yun Baek;Hyeon Ho Jeon;Wan Soo, Kim;Ryu Gap, Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.845-855
    • /
    • 2022
  • The purpose of this study is to develop a self-propelled underground crop harvester and its performance was evaluated by measuring the load during actual potato harvesting operations. This study was conducted at a constant working speed of 1 km·h-1. A load measurement system was installed to measure the actual load and the required working power was analyzed. A hydraulic pressure sensor was also installed to measure the hydraulic pressure. The required hydraulic power was calculated using the hydraulic pressure and flow rate. The results showed that the engine speed, torque, and power during harvesting operation were in the range of 845 - 1,423 rpm, 95 - 228 Nm, and 9 - 31 kW, respectively. Traction power, excluding the hydraulic pump of the tractor and power take-off (PTO) output, was in the range of 9 - 28 kW, and it was confirmed that it occupies a ratio of 16.2 to 50% of the engine rated output. The engine can supply the minimum required traction power to move the vehicle. This means that the engine used in this study could be down-sized to be suitable for an underground crop harvester. In this study, the gear stages of the tractor were not considered. This research thus shows the possibility of developing a self-propelled underground crop harvester.

A Study on the Development of Low Reynolds Number k-$\varepsilon$ Turbulence Model (저레이놀즈수 k-$\varepsilon$난류모형 개선에 관한 연구)

  • 김명호;신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1940-1954
    • /
    • 1992
  • Fine grid computations were attempted to analyze the turbulent flows in the near wall low Reynolds number region and the numerical analyses were incorporated by a finite-volume discretization with full find grid system and low Reynolds number k-.epsilon. model was employed in this region. For the improvement of low Reynolds number k-.epsilon. model, modification coefficient of eddy viscosity $f_{\mu}$ was derived as a function of turbulent Reynolds number $R_{+}$ and nondimensional length $y^{+}$ from the concept of two length scales of dissipation rate of turbulent kinetic energy. The modification coefficient $f_{\epsilon}$ in .epsilon. transport equation was also derived theoretically. In the turbulent kinetic energy equation, pressure diffusion term was added in order to consider low Reynolds number region effect. The main characteristics of this low Reynolds number k-.epsilon. model were founded as : (1) In high Reynolds number region, the present model has limiting behavior which approaches to the high Reynolds number model. (2) Present low Reynolds number k-.epsilon. model dose not need additional empirical constants for the transport equations of turbulent kinetic energy and dissipation of turbulent kinetic energy in order to consider wall effect. Present low Reynolds number turbulence model was tested in the pipe flow and obtained improved results in velocity profiles and Reynolds stress distributions compared with those from other k-.epsilon. models.s.s.

A Study on the Measurement of Aerodynamic Load of Aircraft Wing (항공기 날개의 공력하중 측정 기법 연구)

  • Kang, Seung-Hee;Lee, Jong-Geon;Lee, Seung-Soo;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.38-43
    • /
    • 2002
  • A study on the test, design and fabrication of wind tunnel model for measurement of air load distribution on wing surfaces is presented. 447 pressure taps are installed normal to the wing surfaces, and measured by PSI-8400 system using total 8 ESPs modules installed in the model. The test was performed at 50 m/sec constant speed in the low speed wind tunnel of Agency for Defense Development. Tests were carried out to determine effects of angle of attack, angle of sideslip and flap and stores for the load distribution of wing. The test results in this paper can be applied to the design optimization of structure and validation of computational fluid dynamics.