• Title/Summary/Keyword: Constant Pressure System

Search Result 570, Processing Time 0.024 seconds

An Experimental Study on Miscibility and Vapor Pressure of R-744/Oil Mixtures (R-744/오일 혼합물의 상용성 및 증기압에 관한 실험적 연구)

  • 최희성;강병하;박경근;김석현
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.2
    • /
    • pp.150-157
    • /
    • 2004
  • Carbon dioxide ($CO_2$, R-744) has become a very popular issue in application to refrigeration and air conditioning systems as a natural refrigerant. An experimental study has been carried out to investigate miscibility and the vapor pressure of refrigerant R-744 in the presence of lubricant oil. This is of particular interest in the selection of the lubricant oil for the compressor of a refrigeration system or an air conditioning system using the refrigerant R-744. The experimental set-up consists of the equilibrium cell, measuring devices, the vacuum pump, the constant temperature bath and relevant connecting pipes made of stainless steel. Five lubricant oils, such as mineral oil (Naphthenic), AB (Alkyl Benzene) oil, PAO (Poly Alpha Olefin) oil, PAG (Poly Alkylene Glycol) oil and POE (Polyol Ester) oil are considered in the present study. Test runs were conducted with the oil concentration range from 5 to 50 wt%, and the temperature range from -10 to 1$0^{\circ}C$ with 2$^{\circ}C$ intervals. The miscibility results are visualized and correlated with the vapor pressure for the individual test components.

An Experimental Study of the Air-side Particulate Fouling of Finned-Tube Heat Exchangers of Air Conditioners by using Accelerated Particle-Loading System (파울링 형성 가속장치를 이용한 공기조화기용 열교환기의 공기측 파울링 특성에 대한 실험적 연구)

  • 안영철;조재민;이재근;이현욱;안승표;윤덕현;하삼철;강태욱;옥주호
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.10
    • /
    • pp.802-808
    • /
    • 2003
  • The air-side particulate fouling of the HVAC heat exchangers degrades the performance of cooling capacity, pressure drop across a heat exchanger, and indoor air quality. The purpose of this study is to investigate the fouling characteristics using accelerated particle loading system. The fouling characteristics are analyzed as functions of a dust concentration, a face velocity and a wet or dry surface condition. The pressure drop increases with increasing test operation and reaches constant asymptotic level. For the saturated condition due to particle loading, the pressure drop across the slitted finned-tube heat exchangers at the face velocity of 1 m/sec increases up to 57% and the cooling capacity decreases about 2%. The cooling capacities are not affected greatly by the presence of the fouling deposits if the thickness of the fouling deposits can not change substantially the flow pattern through the fins.

Study on the Aerodynamic Performance of a Cross-Flow Fan for the Various Design Factors of an Indoor Room Air-Conditioner (룸에어콘 실내기의 설계인자 변화에 따른 관류홴의 공력성능 연구)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.9 no.3
    • /
    • pp.33-38
    • /
    • 2005
  • The aerodynamic performance of a cross-flow fan is strongly influenced by the various design factors of a rear-guider and a stabilizer. The purpose of this paper is to investigate the effects of a rear-guider and a stabilizer on the aerodynamic performance of a cross-flow fan. The design factors considered in this paper are a rear-guider clearance, a stabilizer clearance, and a stabilizer setup angle, respectively. This experiment was carried out with a constant revolution number of 700 rpm in a cross-flow fan installed in the fan tester. The static pressure, flowrate, torque, and revolution number were measured in this paper. Also, the pressure coefficient and the efficiency were analysed according to the various assembly conditions using a stabilizer setup angle, a stabilizer clearance, and a rear-guider clearance in the indoor room air-conditioner.

  • PDF

A Study on Improved Operation of Apartment Heating System in a Machine Room (공동주택 기계실 난방설비 운전 개선 연구)

  • Seo, Jeong-Ah;Shin, Younggy;Kim, Yong-Ki;Lee, Tae-Won
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.29 no.1
    • /
    • pp.38-42
    • /
    • 2017
  • This study proposes an idea for energy saving in apartment machine rooms. A conventional district heating system is equipped with constant-flow pumps and bypass valves to regulate pump differential pressure. Each family unit is equipped with a constant-flow on/off valve. This leads to excessive hot water circulation and a high return temperature. To reduce energy loss, this study assumes that each family unit is renovated with a heating valve which regulates the return temperature at $35^{\circ}C$. The hot water supply pump is also replaced with a pump with an inverter to vary flow rate. Expected energy savings is then estimated from field test data. According to the results, pump electricity consumption was reduced by 6,100 kWh for a family unit building over about half a year. The supply temperature can also be lowered by $5^{\circ}C$, which can contribute to a production of electricity of 10.3 kWh/ton of hot water.

Fluid-structure interaction system predicting both internal pore pressure and outside hydrodynamic pressure

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.7 no.6
    • /
    • pp.649-668
    • /
    • 2018
  • In this paper, we present a numerical model for fluid-structure interaction between structure built of porous media and acoustic fluid, which provides both pore pressure inside porous media and hydrodynamic pressures and hydrodynamic forces exerted on the upstream face of the structure in an unified manner and simplifies fluid-structure interaction problems. The first original feature of the proposed model concerns the structure built of saturated porous medium whose response is obtained with coupled discrete beam lattice model, which is based on Voronoi cell representation with cohesive links as linear elastic Timoshenko beam finite elements. The motion of the pore fluid is governed by Darcy's law, and the coupling between the solid phase and the pore fluid is introduced in the model through Biot's porous media theory. The pore pressure field is discretized with CST (Constant Strain Triangle) finite elements, which coincide with Delaunay triangles. By exploiting Hammer quadrature rule for numerical integration on CST elements, and duality property between Voronoi diagram and Delaunay triangulation, the numerical implementation of the coupling results with an additional pore pressure degree of freedom placed at each node of a Timoshenko beam finite element. The second original point of the model concerns the motion of the outside fluid which is modeled with mixed displacement/pressure based formulation. The chosen finite element representations of the structure response and the outside fluid motion ensures for the structure and fluid finite elements to be connected directly at the common nodes at the fluid-structure interface, because they share both the displacement and the pressure degrees of freedom. Numerical simulations presented in this paper show an excellent agreement between the numerically obtained results and the analytical solutions.

Effects of Sintering Additives and Atmospheres on the Piezoelectric and Sintering Properties of $Pb_{0.98}Cd_{0.02}Zr_{0.36}Ti_{0.39}Ni_{0.083}Nb_{0.167}O_3$ (소결첨가제와 분위기가 $Pb_{0.98}Cd_{0.02}Zr_{0.36}Ti_{0.39}Ni_{0.083}Nb_{0.167}O_3$의 소결 및 압전 특성에 미치는 영향)

  • 문종하;박진성;박현수
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.11
    • /
    • pp.1260-1266
    • /
    • 1996
  • The effects of SiO2 MnO2 and sintering atmospheres (O2, N2) on the piezoelectric properties and densification behaviors of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 were investigated. The addition of SiO2 to the system enhanced the rate of densification but supressed the rate of grain growth. On the other hand the addition of MnO2 to the system did not nearly affect the rate of densification but increased slightly the rate of grain growth The densification of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 containing of SiO2 or MnO2 was promoted with increasing the partial pressure of O2. The relative dielectric constant ($\varepsilon$r) and piezoelectric constant (d33) of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 containing of SiO2 or MnO2 sintered under O2 atmosphere were higher than under N2 atmosphere. Whereas the mechanical quality factor (Qm) of specimens sintered under O2 atmosphere were lower than under N2 atmosphere. Thus the sintering atmosphere of O2 and N2 in Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 containing of SiO2 or MnO2 acted as donor and acceptor respectively. As the amount of SiO2 increased the relative dielectric constant ($\varepsilon$r) and piezoelectric constant (d33) of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 but the mechanical quality factor (Qm) did not nearly change, In the case of the addition of MnO2 to the system the relative dielectric constant ($\varepsilon$r) and piezoelectric constant (d33) of Pb0.98Cd0.02Zr0.36Ti0.39Ni0.083Nb0.167O3 sintered under O2 atmosphere decreased rapidly with increasing the amount of MnO2 but they were unchanged with increasing the amount of MnO2 under N2 sintering atmosphere. Therefore the differences of the relative dielect-ric constant ($\varepsilon$r) and piezoelectric constant (d33) due to sintering atmosphere were diminished as the amount of MnO2 increased.

  • PDF

Analysis of New Air Control System in Clean Stocker(II) (Clean Stocker내 새로운 방식의 기류제어에 관한 연구(II))

  • Choi, Gi-Han;Han, Chang-Woo;Lee, Sang-Ryong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.6
    • /
    • pp.1178-1186
    • /
    • 2002
  • Clean stockers are being used by semiconductor and TFT-LCD manufacturers to store and buffer work in process. The only way to keep the stored product clean is to provide constant clean airflow the product and through stocker. Up to now, stockers typically have been configured to receive their laminar airflow from fan filter units that are located on the side of the stocker. This type of stocker may have such problems as complexity of structure, increment of temperature, mechanical vibration, initial investment and running cost. In this study, in order to solve the above mentioned problems, new air control system in stocker is proposed, which is to control open ratios of exits that are located on the side of the stocker without fan filter units. In this study, static pressure regain was used for the analysis of the open ratios of exits theoretically and experiment was also conducted using actual clean stocker for TFT-LCD manufacturers and CFDesign, was used for simulating airflow in stocker. As a result, open ratios of exits can be obtained by the analysis of static pressure regain and was verified by experiment and simulation results. Therefore, new air control system in stocker can be used by the semiconductor and TFT-LCD manufacturers.

Effect of the Change in Ambient Gas Density on the Mixture Formation Process in Evaporative Free Diesel Spray (주위기체 밀도변화가 증발자유디젤분무의 혼합기형성과정에 미치는 영향)

  • Yeom, J.K.;Chung, S.S.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.209-213
    • /
    • 2005
  • The effects of density change of ambient gas on mixture formation process have been investigated in high temperature and pressure field. To analyze the mixture formation process of evaporating diesel spray is important for emissions reduction in actual engines. Ambient gas density was selected as experimental parameter. The ambient gas density was changed from $r_a=5.0kg/m^3\;to\;r_a=12.3kg/m^3$ with a high pressure injection system(ECD-U2). For visualization of the experiment phenomenon, a CVC(Constant Volume Chamber) was used in this study. The ambient temperature and injection pressure are kept as 700K and 72MPa, respectively. The images of liquid and vapor phase in the evaporating free spray were simultaneously taken by exciplex fluorescence method. As experimental results, with increasing ambient gas density, the tip penetration of the evaporating free spray decreases due to the increase in the drag force from ambient gas.

  • PDF

Exergy Analysis of Waste Energy Recovery System in Regasification Process of LNG FSRU (LNG FSRU의 재기화 공정에서 폐에너지회수시스템의 엑서지 분석)

  • Han, Seoung Hyun;Jo, Jae Ho;Kwon, Jeong-Tae;Park, Kyoungwoo;Choi, Byung Chul
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.82-89
    • /
    • 2022
  • In this study, the exergy characteristics were analyzed, according to the mass flow rate of the propane working fluid and the pressure change in the turbine inlet, for the efficient recovery of cold energy and exhaust heat by the waste energy recovery system applied to the LNG FSRU regasification process. When the turbine inlet pressure and mass flow rate of the Primary Rankine Cycle were kept constant, the exergy efficiency and the net power increased. This occurred as the turbine inlet pressure and the mass flow rate of the working fluid increased in the Secondary Rankine Cycle, respectively, and the maximum values were confirmed. In this regard, the fluctuations in the exergy rate flowing into and out of the system and the exergy rate destroyed by pumps, evaporators, turbines, and LNG heat exchangers (condensers) were examined in detail.

Experimental Study on Spray Characteristics of Gasoline Direct Injection Multi-hole Injector (가솔린 직접분사용 다공형 인젝터의 분무특성에 관한 실험적 연구)

  • Lee, Sang-In;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.5
    • /
    • pp.2054-2060
    • /
    • 2011
  • The purpose of this paper is to investigate spray characteristics of GDI injector that is economic and environment-friendly. Injector characteristics such as penetration length, spray angle and mixture formation were measured using experimental visualization technique. Especially, it has been analyzed that the influences of ambient pressure and injection pressure on penetration length and spray angle. To visualize the spray, a constant volume combustion chamber and fuel supply system have been manufactured. A high-speed camera and LED light source have been applied to obtain spray images. The experimental and visualization result shows that the penetration length is increased as decreasing ambient pressure and/or increasing injection pressure. Also, ambient pressure and injection pressure have minor effect on the spray angle variation.