• Title/Summary/Keyword: Constant Pressure System

Search Result 570, Processing Time 0.027 seconds

Characteristics of the Transient Pressure in a Building Water Supply System with an Air Chamber (공기실이 설치된 건축물 급수관로의 과도압력 특성)

  • 황희성;임기원;이광복;조병선;차동진
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.782-790
    • /
    • 2000
  • A numerical study has been conducted to characterize the transient pressure in a building water supply system with an air chamber by utilizing a commercial code that employs the method of characteristics. Some results produced for the purpose of verification in the study agree quite well with the previously reported. Several parameters are then varied. Among them are the valve closure time, the wave speed, the static pressure, the polytropic exponent, the air chamber volume, the inner diameter and the shape of orifice in the air chamber, etc, while the water temperature and velocity are kept constant at $20^P{circ}C $,/TEX> and 0.8 m/s, respectively, Results reported in this parametric study may be useful to understand the unsteady behavior of the system.

  • PDF

Pressure Control Characteristics of a 2-Way Solenoid Valve Driven by PWM Signal (2방향 전자밸브의 PWM 신호에 의한 압력제어 특성)

  • Jeong, Heon-Sul;Kim, Hyoung-Eui
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.8
    • /
    • pp.1565-1576
    • /
    • 2002
  • By way of driving a 2-way on/off solenoid hydraulic valve with a pulse width modulation (PWM) signal, control of the pressure in a certain volume is frequently used in various applications. However, the pressure built-up according to the duty ratio and carrier frequency of the PWM signal is not so well understood. In order to clarify the characteristics of 2-way valve hydraulic pressure control systems, in this paper two formula fur the mean and ripple of the load pressure were derived through theoretical analysis. And the accuracy of the derived formula were verified by comparison with the experimental test result. Generally 2-way valve systems are constructed as a bleed-off circuit, while 3-way valves are used as a control element in a meter-in circuit pressure control system. In a bleed-off circuit, the system supply pressure from a hydraulic power pack does not remain constant, but changes according to their external load. In turn, the relief valve in the hydraulic power pack reacts accordingly showing complicated dynamic behavior, which makes an analytical study difficult. In order to resolve the problem, simple but accurate empirical dynamic models fer a bleed-off system were used in the course of formula derivation. As the result, selection criteria for two major control parameters of the driving signal is established and the basic strategy to suppress the unnecessary pressure fluctuation can be provided for a hydraulic pressure control system using a 2-way on/off solenoid valve.

Low Frequency Dynamic Characteristics of Liquid-Propellant Rocket Engine Combustor (액체추진제 로켓엔진 연소기 저주파 동특성)

  • Ha Seong-Up;Jung Young-Seok;Kim Hui-Tae;Han SangYeop;Cho Gwang-Rae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.91-101
    • /
    • 2004
  • With the mathematic linear model of a combustor which consists of a combustion chamber and injectors, the analysis of low frequency dynamic characteristics of a liquld-propellant rocket engine combustor was performed. Propellant mass flowrate was varied by combustion chamber pressure feedback, therefore low frequency oscillation was appeared. Increasing the time constant of a combustion chamber and injector pressure differences and decreasing combustion time delay increased the combustor system stability. The variation of injector time constant little affected stability. The system was always stable, when there was no combustion time delay. Increasing combustion time delay decreased oscillation frequency and damping ratio, and the system eventually became unstable.

A study on the combustion characteristics according to evaporation rate of gasoline (가솔린 연료의 기화율 변화에 따른 연소 특성에 관한 기초 연구)

  • Lee, K.H.;Lee, C.S.;Shin, K.S.;Cho, H.M.
    • Journal of ILASS-Korea
    • /
    • v.1 no.3
    • /
    • pp.29-36
    • /
    • 1996
  • The present study systematically investigates the effect of evaporation rate on the combustion characteristics and the flame stabilization in a gasoline engine. A constant volume combustion chamber was used to elucidate a basic combustion characteristics and the premixer was installed to control temperature and equivalence ratio. And the maximum pressure, combustion duration and flame propagation according to the evaporation rate were measured to determine the optimal temperature range for evaparating a gasoline fuel. These experimental results indicate that the combustion characteristics such as combustion chamber pressure and combustion duration were deteriorated by decreasing surrounding temperature of fuel injected. It was also found that the overall gasification process for gasoline fuel was strongly influenced by a combustion chamber temperature rather than a premixer temperature.

  • PDF

Speed Control of an Overcentered Variable-Displacement Hydraulic Motor on a Constant Pressure Network (일정 압력원에 연결된 가변유압모터의 속도제어)

  • 김철수;이정오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.272-276
    • /
    • 1996
  • This study deals with the speed control of an overcentered variable-displacement hydraulic motor on a constant pressure network, which is noted for its high system efficiency fast dynamic response and energy recovery capability. The speed control characteristics of the conventional cascade PI controller are largely affected by load-torque disturbances. To obtain robust speed control despite torque disturbances, the load torque is estimated by an observer based on a mathematical model and compensated for by a feedforward loop. It is shown by experiment that robust speed control may be obtained with the proposed controller. The experimental data agree fairly well with the theoretical analysis.

  • PDF

Braking Pressure Characteristics of Solenoid-Flow Control Type ABS by PWM Control (PWM 제어에 의한 솔레노이드-유량제어방식 ABS의 제동압력 특성)

  • Song, Chang-Seop;Yang, Hae-Jeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.8
    • /
    • pp.146-154
    • /
    • 1997
  • Solenoid-folw control type ABS is used with a 'dump and reapply' pressure control arrangement instead of using 2/2 (normal open/close) solenoid valves in convensional systems(sol. -sol. control type), a flow control valve is used which replaces the (no) inlet valve. The flow control valve controls fluid flow providing a nearly constant reapply rate( .theta. ) after the dump plase of ABS operation. In this study, to investigate a characteristics of brake pressure by PWM control, test rig was consisted of ABS hydraulic modulator, digital controller, pneumatic power supply and brake master cylinder. For comparison with experi- mental results, system modelling and computer simulation were performed. As a result, experiment results showed fairly agreement with the simulation. Also, it is shown that the pressure gradient (tan .theta. ) is affected by pressure, frequency, duty ratio and expressed with an exponential funtion.

  • PDF

A Study on the Comparison of Design Conditions between Booster Ejector and Air Ejector in the Steam-Jet Water-Vapour Refrigeration Cycle (증기분사냉동계의 부우스터 이젝터와 에어 이젝터의 설계조건비교에 관한 연구)

  • Lee, Chang-Sik
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.7 no.2
    • /
    • pp.73-79
    • /
    • 1978
  • This paper presents the experimental study on the design conditions of pressure between booster ejector and air ejector in the steam-jet water-vapour refrigeration system. In this experiment, the motive steam of booster ejector and ai. ejector was dry saturated from 6 ata to 8 ata and flash chamber pressure were about $10\∼540mmHg$ higher than mixing section in booster ejector. The investigation of air on the pressure of booster ejector was performed by changing the condenser pressure. The experimental results show that flash chamber vacuum and condenser pressure of steam-jet refrigeration cycle increased in accordance with the increase of motive steam Pressure. Among the several nozzle sires tested, No.4 nozzle were best in term of evaporator vacuum under the constant operating conditions of air ejector in condenser.

  • PDF

Implementation of Infinite Boundary Condition Considering Superposed Theory on SVE Remediation System (토양증기추출복원 시스템에서 중첩이론을 고려한 무한 경계조건 실행)

  • Park, Jeong-Jun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.3
    • /
    • pp.9-16
    • /
    • 2007
  • Soil vapor extraction (SVE) is an effective and cost efficient method of removing volatile organic compounds (VOCs) and petroleum hydrocarbons from unsaturated soils. Incorporating PVDs in an SVE system can extend the effectiveness of SVE to lower permeability soils by shortening the air flow-paths and ultimately expediting contaminant removal. With this approach, the real bounded system is replaced for the purposes of analysis by an imaginary system of infinite areal extent. The boundary conditions for the contaminant remediation model test include constant head and no flow condition. Due to these parallel boundaries conditions, image wells should be developed in order to maintain the condition of no flow across the impermeable boundary. It is also assumed that the flow is drawdown along the constant head boundary condition. The factors contributing to the difference between the theoretical and measured pressure heads were also analyzed. The flow factor increases as the flow rate is increased. The flow rate is the most important factor that affects the difference between the measured and theoretical pressure heads.

  • PDF

Simulation of Pipe Network for Optimum Heat Supply in the Hot Water Heating System of Apartment House (공동주택 온수난방 시스템의 적정 열공급을 위한 배관망 시뮬레이션)

  • Kim, J.Y.;Mim, M.K.;Choi, Y.D.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.157-168
    • /
    • 1993
  • Pipe network of hot water heat supply system in an apartment house was analyzed. Flowrate and supply heat capacity of each household in which constant flowrate balancing valve is installed in a single zone system were calculated and the results were investigated. In the existing piping system, the non-uniformity of heat supply with floors due to the static pressure and temperature difference between supply main and return main can not be avoided and this tendency get intense with the increase of the height of building. The non-uniformity of heat supply can be prevented by the installation of balancing valve at each household, however if the performance of supply pump is not sufficient to overcome the energy loss due to the installation of balancing valve for constant flow rate or if the selection of the valve capacity is not adequate, the valves will may lose their controllability.

  • PDF

Air-pressure Control of Diaphragm using Variable Frequency Current Control (가변 주파수 전류 제어에 의한 다이어프램의 압력제어)

  • Lim, Geun-Min;Lee, Dong-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.258-265
    • /
    • 2011
  • This paper presents a variable frequency current control scheme for the air-pressure control of diaphragm. Differ from the conventional air-pressure control of diaphragm, the proposed method uses a single-phase inverter to control the phase current and frequency. The phase current is adjusted to keep the reference air-pressure of the diaphragm. And the current frequency is changed to reduce the mechanical vibration. In order to smooth change of the operation with a constant air-pressure, the frequency is changed according to the voltage reference from the current controller. When the phase current is satisfied to the constant air-pressure, the current frequency is increased to reduce the vibration of the diaphragm. When the reference voltage to keep the phase current is over than the set value, the current frequency is decreased to keep the air-pressure. The proposed control scheme is verified by the experimental test of a commercial diaphragm.