• 제목/요약/키워드: Constant Deflection

검색결과 172건 처리시간 0.03초

상시처짐을 이용한 공용중인 고속철도 PSC BOX교의 긴장력 손실 예측 (Prediction of Jacking Force Loss for Serviced High Speed Railway PSC BOX Bridge Using Constant Deflection)

  • 최정열;김태근;정지승
    • 문화기술의 융합
    • /
    • 제9권4호
    • /
    • pp.549-555
    • /
    • 2023
  • 공용중인 고속철도의 PSC Box 교량의 긴장력 관리는 교량 성능에 있어 매우 중요한 기능으로 교량 유지관리시 세밀한 관리가 필요하다. 이에 본 연구에서는 열차(활하중) 재하시험 없이 측정한 상시처짐 결과를 이용하여 PSC Box girder 내부의 긴장력 감소 수준과 긴장력 손실에 다른 재긴장 예측 시기를 연구하고자 한다. PSC Box 거더의 긴장력 감소에 따른 재긴장 시기 예측결과, 준공 이후 약 17년 이전에서는 긴장력 감소(Jacking force loss) 곡선이 완만한 것으로 나나낫다. 그러나 17년 이후에서는 긴장력 감소 곡선이 급격하게 변화되는 것으로 나타났다. 따라서 공용연수 증가에 따라 긴장력이 감소하는 것으로 확인되었고, 구조물의 노후화가 진행될수록 긴장재의 손신을 더 급격하게 증가되는 것으로 분석되었다. 향후 공용중인 PSC Box 교량중에서 준공 이후 18년 이상 경과된 구조물의 경우 긴장재 및 주변 손상에 대한 정밀조사가 필요할 것으로 판단된다.

고차전단변형과 대처짐을 고려한 복합적층판의 저속충격거동 해석 (Low-Velocity Impact Response Analysis of Composite Laminates Considering Higher Order Shear Deformation and Large Deflection)

  • 최익현;홍창선
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2982-2994
    • /
    • 1993
  • Low-velocity impact responses of composite laminates are investigated using the finite element method based on various theories. In two-dimensional nonlinear analysis, a displacement field considering higher order shear deformation and large deflection of the laminate is assumed and a finite element formulation is developed using a C$^{o}$-continuous 9-node plate element. Also, three-dimensional linear analysis based on the infinitesimal strain-displacement assumptions is performed using 8-node brick elements with incompatible modes. A modified Hertzian contact law is incorporated into the finite element program to evaluate the impact force. In the time integration, the Newmark constant acceleration algorithm is used in conjuction with successive iterations within each time step. Numerical results from static analysis as well as the impact response analysis are presented including impact force histories, deflections, strains in the laminate. Impact responses according to two typical low-velocity impact conditions are compared each other.

SPECTRAL ANALYSIS OF THE INTEGRAL OPERATOR ARISING FROM THE BEAM DEFLECTION PROBLEM ON ELASTIC FOUNDATION I: POSITIVENESS AND CONTRACTIVENESS

  • Choi, Sung-Woo
    • Journal of applied mathematics & informatics
    • /
    • 제30권1_2호
    • /
    • pp.27-47
    • /
    • 2012
  • It has become apparent from the recent work by Choi et al. [3] on the nonlinear beam deflection problem, that analysis of the integral operator $\mathcal{K}$ arising from the beam deflection equation on linear elastic foundation is important. Motivated by this observation, we perform investigations on the eigenstructure of the linear integral operator $\mathcal{K}_l$ which is a restriction of $\mathcal{K}$ on the finite interval [$-l,l$]. We derive a linear fourth-order boundary value problem which is a necessary and sufficient condition for being an eigenfunction of $\mathcal{K}_l$. Using this equivalent condition, we show that all the nontrivial eigenvalues of $\mathcal{K}l$ are in the interval (0, 1/$k$), where $k$ is the spring constant of the given elastic foundation. This implies that, as a linear operator from $L^2[-l,l]$ to $L^2[-l,l]$, $\mathcal{K}_l$ is positive and contractive in dimension-free context.

탄성지지된 밸브 배관계의 강제진동 특성 (Forced Vibration Analysis of Elastically Restrained Valve-pipe System)

  • 손인수;윤한기;민병현;허관도
    • 한국기계가공학회지
    • /
    • 제11권4호
    • /
    • pp.90-96
    • /
    • 2012
  • The forced vibration response characteristics of a elastically restrained pipe conveying fluid with attached mass are investigated in this paper. Based on the Euler-Bernoulli beam theory, the equation of motion is derived by using Hamilton's principle. The effects of attached mass and spring constant on the forced vibration characteristics of pipe at conveying fluid are studied. The forced deflection response of pipe with attached mass due to the variation of fluid velocity is also presented. The deflection response is the mid-span deflection of the pipe. The dimensionless forcing frequency is the range from 0 to 16 which is the first natural frequency of the pipe.

자동차 클러치 다이어프램 스프링 하중 특성 및 민감도 해석 (Load Characteristics and Sensitivity Analysis for an Automotive Clutch Diaphragm Spring)

  • 이병수
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.54-59
    • /
    • 2006
  • An analytical solution for deflection-load characteristics of a conical disk spring used especially in the automotive manual transmission clutch applications is proposed in order to take into account the effects of friction and large deformation. The conical disk spring, or the diaphragm spring, has a hinge support, an application point of release load at the tip of the fingers and an application point of clamp load near but inside the outer perimeter of the conical disk spring. The friction coefficient is assumed to be a constant regardless of the speed of deflection and the magnitude of loads. Comparison with experimental shows a good agreement with the analytical prediction. Also, the sensitivity of the clamp load due to variations in the geometrical parameters of the conical disk spring is calculated and discussed.

이동하중과 축하중이 작용하는 유연한 기초위에 지지된 무한보의 동특성 (Dynamic characteristics of flexibly supported infinite beam subjected to an axial force and a moving load)

  • 홍동균;김광식
    • 오토저널
    • /
    • 제4권3호
    • /
    • pp.56-68
    • /
    • 1982
  • This paper presents analytic solutions of defection and their resonance diagrams for a uniform beam of infinite length subjected to an constant axial force and moving transverse load simultaneously. Steady solutions are obtained by a time-independent coordinate moving with the load. The supporting foundation includes damping effects. The influences of the axial force, the damping coefficient and the load velocity on the beam response are studied. The limiting cases of no damping and critical damping are also investigate. The profiles of the deflection of the beam are shown graphically for several values of the load speed, the axial force and damping parameters. Form the results, following conclusions have been reached. 1. The critical velocity .THETA.cr decreases as the axial compressive force increases, but increases as the axial tensile force increase. 2. At the critical velocity .THETA.cr the deflection have a tendency to decrease as the axial tensile force increases and to increase gradually as the axial compressive force increases. 3. In case if relatively small dampings, the deflection increases suddenly as the velocity of the moving load approaches the critical velocity, and it reachs its maximum at the critical velocity, and it decreases and become greatly affected by the axial force as the velocity increases further. 4. in case of relatively large dampings, as the velocity increases the deflection decreases gradually and it is affected little by the axial load.

  • PDF

Effect of macro and micro fiber volume on the flexural performance of hybrid fiber reinforced SCC

  • Turk, Kazim;Kina, Ceren;Oztekin, Erol
    • Advances in concrete construction
    • /
    • 제10권3호
    • /
    • pp.257-269
    • /
    • 2020
  • The aim of this study is to investigate the flexural performance of hybrid fiber reinforced self-compacting concrete (HFRSCC) having different ratio of micro and macro steel fiber. A total of five mixtures are prepared. In all mixtures, the sum of the steel fiber content is 1% and also water/binder ratio is kept constant. The amount of high range water reducer admixture (HRWRA) is arranged to satisfy the workability criteria of self-compacting concrete. Four-point bending test is carried out to analyze the flexural performance of the mixtures at 28 and 56 curing days. From the obtained load-deflection curves, the load carrying capacity, deflection and toughness values are investigated according to ASTM C1609, ASTM C1018 and JSCE standards. The mixtures containing higher ratio of macro steel fiber exhibit numerous micro-cracks and, thus, deflection-hardening response is observed. The mixture containing 1% micro steel fiber shows worst performance in the view of all flexural parameters. An improvement is observed in the aspect of toughness and load carrying capacity as the macro steel fiber content increases. The test results based on the standards are also compared taking account of abovementioned standards.

장기하중을 받는 바닥완충재의 처짐 예측 평가 (Evaluation on Expectation of Deflection of Floor Damping Materials Subjected to Long-Term Load)

  • 김정민;홍윤기;김진구;이정윤
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권4호
    • /
    • pp.19-26
    • /
    • 2016
  • 최근 층간소음을 저감시키기 위하여 밀도와 동탄성계수가 낮은 바닥완충재를 뜬바닥구조에 사용하며, 이로 인하여 바닥완충재의 처짐 및 상부 마감몰탈의 균열이 발생할 가능성이 높아지고 있다. 이 연구에서는 층간소음 저감을 위하여 사용되는 바닥완충재의 장기처짐을 실험을 통하여 평가하였다. 완충재의 재질, 하부형상, 밀도, 가력하중을 변수로 하는 16개의 바닥완충재에 대하여 490일간의 장기처짐 실험을 하였다. 실험에 의하면 완충재의 장기처짐은 하중가력 200일 시점 이후로 일정한 경향을 보였다. 예외적으로 Polystyrene 재질의 완충재 경우, 250 N 하중재하에서는 160일, 500 N 하중재하에서는 100일 이후로 일정한 경향을 보였다. 이 연구에서는 처짐이 일정해지는 구간을 제외한 증가 구간에 대해 두 가지의 장기처짐 평가식을 작성하였으며, 각각 ISO 20392와 실험값의 추세를 이용한 선형회귀 분석을 이용하였다. 두 평가식과 실험값과의 비교분석에서 처짐량이 10 mm 이하의 경우, ISO 20392와 실험값의 추세를 이용한 선형회귀 분석 방법 모두 오차 0.4 mm 이하로 실제 처짐과 유사하게 나타났다. 단, Polystyrene 재질의 완충재 경우, ISO 20392에 의한 처짐 분석 방법이 더 적절한 것으로 판단되었다.

일정체적 캔틸레버 기둥의 좌굴하중 및 후좌굴 거동 (Buckling Loads and Post-Buckling Behavio of Cantilever Column with Constant Volume)

  • 이승우;이태은;김권식;이병구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2006년도 정기 학술대회 논문집
    • /
    • pp.935-940
    • /
    • 2006
  • Numerical methods are developed for solving the elastica and buckling load of cantilever column with constant volume, subjected to a compressive end load. The linear, parabolic and sinusoidal tapers with the regular polygon cross-sections are considered, whose material volume and span length are always held constant. The differential equations governing the elastica of buckled column are derived. The Runge-Kutta method is used to integrate the differential equations, and the Regula-Falsi method is used to determine the horizontal deflection at free end and the buckling load, respectively. The numerical methods developed herein for computing the elastica and the buckling loads of the columns are found to be efficient and reliable.

  • PDF

Behavior of reinforced lightweight aggregate concrete hollow-core slabs

  • Al-Azzawi, Adel A.;Al-Aziz, Basma M. Abdul
    • Computers and Concrete
    • /
    • 제21권2호
    • /
    • pp.117-126
    • /
    • 2018
  • This research investigate the behavior of reinforced normal and lightweight aggregate concrete hollow core slabs with different core shapes, shear span to effective depth (a/d). The experimental work includes testing seven reinforced concrete slabs under two vertical line loads. The dimensions of slab specimens were (1.1 m) length, (0.6 m) width and (0.12 m) thickness. The maximum reduction in weight due to aggregate type was (19.28%) and due to cross section (square and circular) cores was (17.37 and 13.64%) respectively. The test results showed that the decrease of shear span to effective depth ratio from 2.9 to 1.9 for lightweight aggregate solid slab cause an increase in ultimate load by (29.06%) and increase in the deflection value at ultimate load or the ultimate deflection by (17.79%). The use of lightweight aggregate concrete in casting solid slabs give a reduction in weight by (19.28%) and in the first cracking and ultimate loads by (16.37%) and (5%) respectively for constant (a/d=2.9).The use of lightweight aggregate concrete in casting hollow circular core slabs with constant (a/d=2.9) (reduction in weight 32.92%) decrease the cracking and ultimate loads by (12%) and (5.18%) respectively with respect to the solid slab. These slab specimens were analyzed numerically by using the finite element computer program ANSYS. Good agreements in terms of behavior, cracking load (load at first visible crack) and ultimate load (maximum value of testing load) was obtained between finite element analysis and experimental test results.