• Title/Summary/Keyword: Constant Deflection

Search Result 172, Processing Time 0.024 seconds

Effect of Bond Length and Web Anchorage on Flexural Strength in RC Beams Strengthened with CFRP Plate (부착길이와 복부정착이 CFRP판으로 보강된 RC 보의 휨 보강효과에 미치는 영향)

  • 박상렬
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.5
    • /
    • pp.645-652
    • /
    • 2002
  • This paper presents the flexural behavior and strengthening effect of reinforced concrete beams bonded with carbon FRP plate. Parameters involved in this experimental study were plate bond length and sheet web anchorage length. Test beams were strengthened with FRP plate on the soffit and anchored with FRP sheet on the web. In general, strengthened beams with no web anchorage were failed by concrete cover failure along the longitudinal reinforcement. On the other hand, strengthened beams with web anchorage were finally failed by delamination shear failure within concrete after breaking of CFRP sheet wrapping around web. The ultimate load and deflection of strengthened beams increased with an increased bond length of FRP plate. Also, the ultimate load and deflection increased with an increased anchorage length of FRP sheet. Particularly, the strengthened beams with web anchorage maintained high ultimate load resisting capacity until very large deflection. The shape of strain distribution of CFRP plate along beam was very similar to that of bending moment diagram. Therefore, an assumption of constant shear stress in shear span could be possible in the analysis of delamination shear stress of concrete. In the case of full bond length, the ultimate resisting shear stress provided by concrete and FRP sheet Increased with an increase of web anchorage length. In the resisting shear force, a portion of the shear force was provided by FRP anchorage sheet.

Fabrication and Its Characteristics of Ion Energy Spectrometer for Diagnostics of Plasma (플라즈마 진단을 위한 이온에너지 분석장치의 제작 및 특성 조사)

  • Kim, Kye-Ryung;Kim, Wan;Lee, Yong-Hyun;Kang, Hee-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.163-170
    • /
    • 1998
  • An ion energy spectrometer which has the $45^{\circ}$ parallel electrostatic deflection plate was designed and constructed for measuring ion temperature in high temperature plasma. The energy calibration and the energy resolution were studied in detail for a hydrogen ion at the $0.24{\sim}1.92\;keV$ energy using electrostatic accelerator with a duoplasmatron ion source. The voltage of the deflection plate was linearly increased for the decreased ion detector position at the constant ion energy and decreased for the increased ion energy at the fixed ion detector position. The inclination of the deflection plate voltage to the ion energy was between 0.92 and 1.61, and linearly decreased for the increased the ion detector position. The measured energy resolution, which is $4.2%\;{\sim}\;11.6%$ in this experiment region, was improved for the increased ion dector position and ion energy. The relative efficiency was increased for the decreased the ion detector position. The ion energy spectrum of the DC plasma in the multi-purpose plasma generator was measured using this equipment. The ion temperature was 203-205 eV at the discharge voltage 320 V, discharge current 1.7 A.

  • PDF

Numerical Investigation of Aerodynamic Characteristics of a Ducted Fan-Vane Configuration and Improvement of Control Performance in Hover (덕트 팬-베인 형상의 제자리 비행 공력 특성 및 조종 성능 개선에 관한 수치적 연구)

  • Kang, Dong Hun;Yim, Jinwoo;You, Heung-Cheol
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.221-231
    • /
    • 2021
  • In the present study, numerical simulation was performed to investigate aerodynamic characteristics of a ducted fan-upper/lower vanes system in hover. Sensitivity analysis of aerodynamic forces for a system component was conducted with the deflection angle of upper vanes varying but at the constant rotational speed and the collective pitch angle of fan blades. Then, vane control performance and duct airload distributions were analyzed in detail to physically understand operating mechanisms of individual vane and interference effect between duct and vanes. Finally, new control concept of operating upper vanes has been proposed to improve the control performance of the full configuration. It is found that the side force and rolling moment of upper vanes increase linearly with the variation of those deflection angle; however, the total side force is significantly small due to the reaction force acted on the duct. It is also found that upper vanes close to the duct contraction side have a key role in changing vane control forces. It is revealed that the duct suction pressure is induced by the interaction with the suction side of upper vanes, while duct pressure recovery by the interaction with the pressure side, leading to increase in duct asymmetric force. When four upper vanes are kept in situ at 0° deflection angle or removed, the total control performance was improved with duct asymmetric force reduced and the total magnitude of roll remarkably increasing up to 80%.

Observation of Methyl Radical Recombination Following Photodissociation of CH3I at 266 nm by Time-Resolved Photothermal Spectroscopy

  • Suh, Myung-Koo;Sung, Woo-Kyung;Li, Guo-Sheng;Heo, Seong-Ung;Hwang, Hyun-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.318-324
    • /
    • 2003
  • A time-resolved probe beam deflection (PBD) technique was employed to study the energy relaxation dynamics of photofragments produced by photodissociation of $CH_3I$ at 266 nm. Under 500 torr argon environment, experimental PBD transients revealed two energy relaxation processes; a fast relaxation process occurring within an acoustic transit time (less than 0.2 ㎲ in this study) and a slow relaxation process with the relaxation time in several tens of ㎲. The fast energy relaxation of which signal intensity depended linearly on the excitation laser power was assigned to translational-to-translational energy transfer from the photofragments to the medium. As for the slow process, the signal intensity depended on square of the excitation laser power, and the relaxation time decreased as the photofragment concentration increased. Based on experimental findings and reaction rate constants reported previously, the slow process was assigned to methyl radical recombination reaction. In order to determine the rate constant for methyl radical recombination reaction, a theoretical equation of the PBD transient for a radical recombination reaction was derived and used to fit the experimental results. By comparing the experimental PBD curves with the calculated ones, the rate constant for methyl recombination is determined to be $3.3({\pm}1.0)\;{\times}\;10^6\;s^{-1}torr^{-1}$ at 295 ± 2 K in 500 torr Ar.

Finite Element Model Updating of Simple Beam Considering Boundary Conditions (경계조건을 고려한 단순보의 유한요소모델개선)

  • Kim, Se-Hoon;Park, Young-Soo;Kim, Nam-Gyu;Lee, Jong-Jae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.76-82
    • /
    • 2018
  • In this present study, in order to update the finite element model considering the boundary conditions, a method has been proposed. The conventional finite element model updating method, updates the finite element model by using the dynamic characteristics (natural frequency, mode shape) which can be estimated from the ambient vibration test. Therefore, prediction of the static response of an actual structure is difficult. Furthermore, accurate estimation of the physical properties is relatively hard. A novel method has been proposed to overcome the limitations of conventional method. Initially, the proposed method estimates the rotational spring constant of a finite element model using the deflection of structure and the rotational displacement of support measurements. The final updated finite element model is constructed by estimating the material properties of the structure using the finite element model with updated rotational spring constant and the dynamic characteristics of the structure. The proposed finite element model updating method is validated through numerical simulation and compared with the conventional finite element model updating method.

Experimental Study of Flexural Behavior of Reinforced Concrete Beam Using WFS and Recycled Aggregate (순환골재와 폐주물사를 활용한 철근콘크리트보의 휨거동에 관한 실험연구)

  • Kim, Seong-Soo;Lee, Dae-Kyu
    • KIEAE Journal
    • /
    • v.8 no.5
    • /
    • pp.61-68
    • /
    • 2008
  • For the recycling of the resources and the preservation of the environment, this study's purpose is to measure flexural behavior of the reinforced concrete beams with the major variables like concrete strength, replacement ratio of the recycled aggregate and the waste foundry sand and the tension reinforcement ratio and to present the data of the recycled aggregate used for the structure design. The experiment on the flexural behavior resulted in the followings. The ultimate strength of recycled R/C beam was manipulated proportionate to the tension reinforcement ratio, however the strength instantly decreased after passing the ultimate load due to the destroyed concrete of the compression side. The deflection at the maximum load varied from the tension reinforcement ratio by 5.5 times. The test specimen with the tension reinforcement ratio less than $0.5{\rho}b$ showed constant curve without change in the load from the yield to the ultimate load in contrast to the distinctive plastic region where the displacement was rising. Although the strain of main tension steel with the reinforcement ratio indicate different, the design of recycled concrete member can be applied for current design code for reinforced concrete structure as the ratio of tension reinforcement district the under the reinforcement ration in a balanced strain condition.

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.

Aeroelastic Behaviour of Aerospace Structural Elements with Follower Force: A Review

  • Datta, P.K.;Biswas, S.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.134-148
    • /
    • 2011
  • In general, forces acting on aerospace structures can be divided into two categories-a) conservative forces and b) nonconservative forces. Aeroelastic effects occur due to highly flexible nature of the structure, coupled with the unsteady aerodynamic forces, causing unbounded static deflection (divergence) and dynamic oscillations (flutter). Flexible wing panels subjected to jet thrust and missile type of structures under end rocket thrust are nonconservative systems. Here the structural elements are subjected to follower kind of forces; as the end thrust follow the deformed shape of the flexible structure. When a structure is under a constant follower force whose direction changes according to the deformation of the structure, it may undergo static instability (divergence) where transverse natural frequencies merge into zero and dynamic instability (flutter), where two natural frequencies coincide with each other resulting in the amplitude of vibration growing without bound. However, when the follower forces are pulsating in nature, another kind of dynamic instability is also seen. If certain conditions are satisfied between the driving frequency and the transverse natural frequency, then dynamic instability called 'parametric resonance' occurs and the amplitude of transverse vibration increases without bound. The present review paper will discuss the aeroelastic behaviour of aerospace structures under nonconservative forces.

Feed Rate Control for the Head-Feed Thresher (자동탈곡기(自動脱穀機)의 공급율(供給率) 제어(制御)(I) -공급율(供給率)에 따른 부하(負荷) 특성(特性)-)

  • Chung, C.J.;Ryu, K.H.;Choi, Y.S.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.3
    • /
    • pp.20-31
    • /
    • 1988
  • This study was undertaken to investigate the load characteristics of the head-feed thresher, which may be affected by various factors such as physical properties of grain, thresher design parameters and its operational condition. The study was conducted at an initial step toward developing an automatic feed-rate control system of the head-feed thresher. A microcomputer-based data acquisition system for the load-speed characteristic of the thresher-shaft and the rail-deflection of the feeding device in accordance with a varied feeding thickness was developed. The sensors being developed and used for sensing the torque and speed of the cylinder and the power-input-shaft and the feeding thickness showed a high accuracy. A microcomputer-based data acquisition system developed in this study was assessed as adequate for a rapid acquisition and analysis of data. The effect of the feed-rate on the torque and speed of the thresher shaft, when fed intermittently by bundles, affected not by the rice varieties but by the dryness of threshing material tested. When fed by the continuous constant thickness, the torque and speed of the cylinder due to the increase of the feed-rate or feeding thickness were given by the relation by the second order parabola.

  • PDF

Large deflections of spatial variable-arc-length elastica under terminal forces

  • Phungpaingam, Boonchai;Athisakul, Chainarong;Chucheepsakul, Somchai
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.501-516
    • /
    • 2009
  • This paper aims to study the large deflections of variable-arc-length elastica subjected to the terminal forces (e.g., axial force and torque). Based on Kirchhoff's rod theory and with help of Euler parameters, the set of nonlinear governing differential equations which free from the effect of singularity are established together with boundary conditions. The system of nonlinear differential equations is solved by using the shooting method with high accuracy integrator, seventh-eighth order Runge-Kutta with adaptive step-size scheme. The error norm of end conditions is minimized within the prescribed tolerance ($10^{-5}$). The behavior of VAL elastica is studied by two processes. One is obtained by applying slackening first. After that keeping the slackening as a constant and then the twist angle is varied in subsequent order. The other process is performed by reversing the sequence of loading in the first process. The results are interpreted by observing the load-deflection diagram and the stability properties are predicted via fold rule. From the results, there are many interesting aspects such as snap-through phenomenon, secondary bifurcation point, loop formation, equilibrium configurations and effect of variable-arc-length to behavior of elastica.