• Title/Summary/Keyword: Consolidation stress ratio

Search Result 140, Processing Time 0.03 seconds

Stress Concentration Ratio According to Penetration Rate of Composite Ground Reinforced with GCP (GCP로 개량된 복합지반의 관통률에 따른 응력분담비)

  • Na, Seung-Ju;Kim, Daehyeon;Lee, Ik-Hyo;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.35-45
    • /
    • 2017
  • Gravel compaction pile (GCP) is widely used as it increases the bearing capacity of soft ground and reduces the consolidation settlement. Stress concentration ratio for design is dependent on the area replacement, surcharge pressure, depth and penetration rate. However, a range of stress concentration ratio obtained through field, laboratory experiments and numerical analysis is large. But since the main objective of the study is to evaluate the stress concentration ratio and settlement for both area replacement ratio and penetration rate through numerical analysis. Numerical analysis using the finite element program ABAQUS 6.12-4 has been performed for the composite ground with GCP. As a result, the stress concentration ratio at the points except for the point of top is in the range of 1.21-5.36, 1.19-5.45, 2.16-5.60 for 60%, 80% and 100% penetration, respectively. In general, as the penetration rate and area replacement ratio increases, the stress concentration ratio tends to increase.

Study on the Time Dependent Stress-Strain Behavior of Clay (점성토의 시간의존적 응력 - 변형 특성에 관한 연구)

  • 지인택;강우묵
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.4
    • /
    • pp.134-153
    • /
    • 1988
  • This paper was carried out to investigate the existence of a unique stress- strain behavior by obtaining some factors influencing the time dependent stress- strain behavior of clay. The results obtained from this study were summarized as follows ; 1. The relationship between stress ratro and strain in normally consolidated clay was in- dependent on pre-shear consolidation pressure. Therefore, shear strain could be expressed as a function with stress ratio. 2. The constitutive equation of shear strain on Modified Carn Clay Model coincided better with the observed value than Cam Clay Model. 3. The relationships between deviator stress and shear strain, between pore water pressure and shear strain were unified by the mean equivalent pressure. 4. The shear strain contour in norrnally consolidated clay was increased linearly through origin, but that in overconsolidated clay was not in accordance with the result of the former. 5. Because the effective stress path of normally consolidated clay was unified by the mean equivalent pressure, state boundary surface in (e,p,q) space was transformed into two dimensional surface. But it was considered to be suitable that the unified stress- strain in overconsolidated clay be expressed by a function with overconsolidation ratio. 6. The deviator for constant strain was increased linearly with increment of strain rate ($\varepsilon$) on semi-log scale, but pore water pressure was decreased. 7. The behavior of stress relaxation was transformed from linear to curvilinear with inc - rement of strain rate before stress relaxation test, and pore water pressure was increased in total range. 8. The strain of creep was increased linearly with increment of time on semi-log scale. The greater the strain rate before creep test became, the greater the increment of strain of creep became. And the pore water pressure during creep test was increased generally with increment of time on semi-log scale.

  • PDF

A Study on the Horizontal Consolidation and Permeability Characteristics of Decomposed Mudstone Soil in Pohang (이암풍화토의 횡방향압밀 및 투수특성)

  • 김영수;김기영;백영식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.31-42
    • /
    • 2000
  • Consolidation and permeability are major engineering properties of soil. In clay, coefficient of permeability and consolidation can be calculated by incremental loading consolidation test. However, it is known that the incremental loading test has several deficiencies including long testing time, non-uniform stress state, very soft clay and problem of back pressure saturation. Specially, it is not performed with horizontal consolidation test. Several methods have been proposed for obtaining reliable values of $C_v$. Among these, the square root of time-fitting method proposed by Taylor(1948) and logarithm of time-fitting method, also called Casagrande's method, are used extensively in soil engineering practice. But these methods are not amenable for the absence of initial linear portion and have the difficulties involved in distinguishing secondary compression from primary compression. Rowecell consolidation tests were carried out in this study with different trimming axis and sample size. The results were compared with those of other methods; Casagrande,$Taylor,\; Casagrande,\; Hyperbolic,\; \delta/t-logt$. From the results, we explained a relationship between horizontal coefficient of permeability and void ratio was obtained. Finally, the directly measured horizontal coefficient of permeability obtained by using the Rowecell was compared with the permeability derived indirectly from the consolidation test result.

  • PDF

Stress Path Dependent Deformation Characteristics of A Normally Consolidated Saturated Cohesive Soil (정규압밀 포화점성토의 응력경로에 따른 변형특성)

  • 권오엽;정인준
    • Geotechnical Engineering
    • /
    • v.5 no.2
    • /
    • pp.45-56
    • /
    • 1989
  • The influence of stress path on the deformation characteristics of clay has been studied through a series of stress-path controlled triaxial tests on artificially sedimented and normally con- solidated Kaolinite. It has been found that there exists a critical stress increment ratio, Kc, in which stress·strain characteristics possesses a linear relationships and beyond Kc, strain hardening. A modified hyperbolic constitutive model for the strain hardening behavior has been formulated based on the Drnevich's hyperbolic function. And, a method of settlement analyses has been Proposed wherein the effect of stress path during consolidation is taken into account.

  • PDF

Effect of the stress history on the shear behavior using a Triaxial compression test (삼축압축시험을 통한 응력이력에 따른 전단거동의 변화)

  • Kim, Seung-Han;Choi, Sung-Keun;Lee, Moon-Joo;Lee, Woo-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.888-895
    • /
    • 2006
  • In this study, anisotropically consolidated undrained shear(CAU) test was performed to examine the variation of the shear strength according to the stress history. The specimen having 30% relative density was homogeniously prepared, and 200KPa of back pressure was applied to increase the B value more than 0.95. To make NC specimens, the vertical stress was applied on the specimen by 100KPa, 200KPa and 400KPa, and to make OC specimens, the vertical stress was applied upto 400KPa and was reduced to 200KPa and 100KPa resulting in OCR 2 and 4 respectively. The test result indicates the shear strength for the OC specimens are slightly higher then that of the NC specimens at the same confining pressure. The elastic modulus varies according to the confining stress and considerably affected by preconsolidation stress.

  • PDF

Smart geophysical characterization of particulate materials in a laboratory

  • Kwon, Tae-Hyuk;Cho, Gye-Chun
    • Smart Structures and Systems
    • /
    • v.1 no.2
    • /
    • pp.217-233
    • /
    • 2005
  • Elastic and electromagnetic waves can be used to gather important information about particulate materials. To facilitate smart geophysical characterization of particulate materials, their fundamental properties are discussed and experimental procedures are presented for both elastic and electromagnetic waves. The first application is related to the characterization of particulate materials using shear waves, concentrating on changes in effective stress during consolidation, multi-phase phenomena with relation to capillarity, and microscale characteristics of particles. The second application involves electromagnetic waves, focusing on stratigraphy detection in layered soils, estimation of void ratio and its spatial distribution, and conduction in unsaturated soils. Experimental results suggest that shear waves allow studying particle contact phenomena and the evolution of interparticle forces, while electromagnetic waves give insight into the characteristics of the fluid phase and its spatial distribution.

Behaviour Characteristics of Sand Compaction Pile with varying Area Replacement Ratio (모래다집말뚝(SCP)의 치환율 변화에 따른 거동 특성 연구)

  • 박용원;김병일;윤길림;이상익;문대중;권오순
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.117-128
    • /
    • 2000
  • Sand compaction pile(SCP) is one of the ground improvement techniques which is being used for not only accelerating consolidation but also increasing bearing capacity of loose sands or soft clay grounds. In this study, laboratory model test and large-scale direct shear test were performed to investigate the effects of area replacement ratio of composite ground in order to find out the optimum value of area replacement ratio for the ground improvement purpose. Area replacement ratios of 20%, 30%, 40%, 50%, 60% were chosen respectively in the model tests to study the effects of area replacement ratio on variations of stress concentration ratio, settlement and shear strength characteristics of composite ground. In large-scale direct she4ar tests, area replacement ratios of 20%, 30%, 46% were applied to study their effects on shear strength characteristics of composite ground.

  • PDF

Evaluation of OCR in Fine Grained Soil by Piezocone Tests (피에조콘 관입 시험에 의한 OCR 평가)

  • Lim, Beyong-Seock
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.561-568
    • /
    • 2000
  • 본 연구의 목적은 Piezocone 관입시험을 이용한 연약지반의 OCR 평가에 있어 기존의 여러 가지 해석방법들과 최근에 새롭게 제안된 방법들을 실내 모형토조에서 실측된 피에조콘 관입 실험치에 적용하여 각 해석방법들의 차이와 장단점들을 비교 분석하는데 있다. 본 연구의 연구실험방법으로는, Piezocone 관입을 위한 연약 모형지반 조성을 위하여 초대형 Slurry Consolidometer에 Free Stress 상태의 Slurry를 45일간 압밀시킨후 Automatic Computer Control Calibration Chamber (LSU/CALCHAS; Louisiana Slate University Calibration Chamber System)에 옮긴후 다시한번 압밀시키는 Two-Stage Consolidation Method를 사용하였다. 모형지반은 여러 가지 Boundary Condition들과 Stress Condition 그리고 Stress History등을 달리하여 총 5개의 지반을 조성하였다. 관입시험은 총 25개의 Piezocone 관입이 수행되어졌고, 그중 4개는 Standard 10 cm2 Piezocone이고, 나머지 21개는 Miniature Piezocone이 사용되었다. Piezocone 실험치들에 대한 여러 가지 OCR 해석방법 적용결과, Schmertmann방법은 5개 모형지반 모두에서 과다한 OCR평가를 보였으며, $B_{q}$ 방법은 일부모형지반에서 음의 OCR값으로 계산되어졌다. 그러나, Critical-Stale Soil Mechanics 와 Cavity Expansion 이론에 근거하여 Mayne(1991), Kurup(1993), Tumay et al (1995) 들이 제안한 OCR 평가방법들은 실험치와 잘맞는 경향을 보여주었다. 이와같은 이론 모델값들의 차이는 응력조건(Stress Condition)과 경계조건(Boundary Condition)들에 대한 각 해석방법들의 고려정도에 따른 결과로 판단된다.

  • PDF

Characteristics of Material Function Related to Permeability and Compressibility for Soft Clay Ground (투수 및 압축에 대한 연약 점토지반의 물질함수 특성)

  • Lee, Song;Jeon, Je-Sung;Yi, Chang-Tok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.183-194
    • /
    • 2004
  • It's essential process to study non-linear material function related to characteristics of compressibility and permeability when we predict the consolidation behavior of soft clay ground. In this study, laboratory tests were conducted to find out the material function using marine clay. Standard oedometer test and Rowe cell test were performed with conditions, which were classified into vertical drainage only, radial drainage only and vertical-radial drainage case. Modified oedometer test equipment was developed to find out the material function and special extrusion device was originated to minimize the sample disturbance effect. Reliability of the results in modified oedometer test could be confirmed by comparing with the Rowe cell's one. Effective stress - void ratio - permeability relations were analyzed using all testing results. As a result, void ratio with effective stress level could be expressed by the power function and permeability with void ratio could be expressed by exponential function. In soft clay with high initial water content and low shear strength, non-linear characteristics related to compressibility and permeability varied with wide range by the effective stress levels. It's important to note that non-linearity of the material function should be considered at prediction of the consolidation behavior.

Effects of fines content on void ratio, compressibility, and static liquefaction of silty sand

  • Lade, Poul V.;Yamamuro, Jerry A.;Liggio, Carl D. Jr.
    • Geomechanics and Engineering
    • /
    • v.1 no.1
    • /
    • pp.1-15
    • /
    • 2009
  • Many aspects of the behavior of sands are affected by the content of non-plastic fine particles and these various aspects should be included in a constitutive model for the soil behavior. The fines content affects maximum and minimum void ratios, compressibility, shear strength, and static liquefaction under undrained conditions. Twenty-eight undrained triaxial compression tests were performed on mixtures of sand and fine particles with fines contents of 0, 10, 20, 30, 50, 75, and 100% to study the effects of fines on void ratio, compressibility, and the occurrence of static liquefaction. The experiments were performed at low consolidation pressures at which liquefaction may occur in near-surface, natural deposits. The presence of fines creates a particle structure in the soil that is highly compressible, enhancing the potential for liquefaction, and the fines also alter the basic stress-strain and volume change behavior, which should be modeled to predict the occurrence of static liquefaction in the field. The void ratio at which liquefaction occurs for each sand/fines mixture was determined, and the variation of compressibility with void ratio was determined for each mixture. This allowed a relation to be determined between fines content, void ratio, compressibility, and the occurrence of static liquefaction. Such relations may vary from sand to sand, but the present results are believed to indicate the trend in such relations.