• Title/Summary/Keyword: Consensus Protocol

Search Result 64, Processing Time 0.028 seconds

PoW-BC: A PoW Consensus Protocol Based on Block Compression

  • Yu, Bin;Li, Xiaofeng;Zhao, He
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.4
    • /
    • pp.1389-1408
    • /
    • 2021
  • Proof-of-Work (PoW) is the first and still most common consensus protocol in blockchain. But it is costly and energy intensive, aiming at addressing these problems, we propose a consensus algorithm named Proof-of-Work-and-Block-Compression (PoW-BC). PoW-BC is an improvement of PoW to compress blocks and adjust consensus parameters. The algorithm is designed to encourage the reduction of block size, which improves transmission efficiency and reduces disk space for storing blocks. The transaction optimization model and block compression model are proposed to compress block data with a smaller compression ratio and less compression/ decompression duration. Block compression ratio is used to adjust mining difficulty and transaction count of PoW-BC consensus protocol according to the consensus parameters adjustment model. Through experiment and analysis, it shows that PoW-BC improves transaction throughput, and reduces block interval and energy consumption.

LQ Inverse Optimal Consensus Protocol for Continuous-Time Multi-Agent Systems and Its Application to Formation Control (연속시간 다개체 시스템에 대한 LQ-역최적 상태일치 프로토콜 및 군집제어 응용)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.526-532
    • /
    • 2014
  • In this paper, we present and analyze a LQ (Linear Quadratic) inverse optimal state-consensus protocol for continuous-time multi-agent systems with undirected graph topology. By Lyapunov analysis of the state-consensus error dynamics, we show the sufficient conditions on the algebraic connectivity of the graph to guarantee LQ inverse optimality and closed-loop stability. A more relaxed stability condition is also provided in terms of the algebraic connectivity. Finally, a formation control protocol for multiple mobile robots is proposed based on the target LQ inverse optimal consensus protocol, and the simulation results are provided to verify the performance of the proposed LQ inverse formation control method.

Group Average-consensus and Group Formation-consensus for First-order Multi-agent Systems (일차 다개체 시스템의 그룹 평균 상태일치와 그룹 대형 상태일치)

  • Kim, Jae Man;Park, Jin Bae;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.12
    • /
    • pp.1225-1230
    • /
    • 2014
  • This paper investigates the group average-consensus and group formation-consensus problems for first-order multi-agent systems. The control protocol for group consensus is designed by considering the positive adjacency elements. Since each intra-group Laplacian matrix cannot be satisfied with the in-degree balance because of the positive adjacency elements between groups, we decompose the Laplacian matrix into an intra-group Laplacian matrix and an inter-group Laplacian matrix. Moreover, average matrices are used in the control protocol to analyze the stability of multi-agent systems with a fixed and undirected communication topology. Using the graph theory and the Lyapunov functional, stability analysis is performed for group average-consensus and group formation-consensus, respectively. Finally, some simulation results are presented to validate the effectiveness of the proposed control protocol for group consensus.

Research on Finite-Time Consensus of Multi-Agent Systems

  • Chen, Lijun;Zhang, Yu;Li, Yuping;Xia, Linlin
    • Journal of Information Processing Systems
    • /
    • v.15 no.2
    • /
    • pp.251-260
    • /
    • 2019
  • In order to ensure second-order multi-agent systems (MAS) realizing consensus more quickly in a limited time, a new protocol is proposed. In this new protocol, the gradient algorithm of the overall cost function is introduced in the original protocol to enhance the connection between adjacent agents and improve the moving speed of each agent in the MAS. Utilizing Lyapunov stability theory, graph theory and homogeneity theory, sufficient conditions and detailed proof for achieving a finite-time consensus of the MAS are given. Finally, MAS with three following agents and one leading agent is simulated. Moreover, the simulation results indicated that this new protocol could make the system more stable, more robust and convergence faster when compared with other protocols.

Inverse Optimal Design of Formation/Velocity Consensus Protocol for Mobile Robots Based on LQ Inverse Optimal Second-order Consensus (LQ-역최적 2차 일치제어에 기반한 이동로봇에 대한 대형·속도일치 프로토콜의 역최적 설계)

  • Lee, Jae Young;Choi, Yoon Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.5
    • /
    • pp.434-441
    • /
    • 2015
  • In this paper, we propose an inverse optimal distributed protocol for the formation and velocity consensus of nonholonomic mobile robots. The communication among mobile robots is described by a simple undirected graph, and the mobile robots' kinematics are considered. The group of mobile robots driven by the proposed protocols asymptotically achieves the desired formation and group velocity in an inverse optimal fashion. The design of the protocols is based on dynamic feedback linearization and the proposed linear quadratic (LQ) inverse optimal second-order consensus protocol. A numerical simulation is given to verify the effectiveness of the proposed scheme.

Quorum Consensus Method based on Ghost using Simplified Metadata (단순화된 메타데이타를 이용한 고스트 기반 정족수 동의 기법의 개선)

  • Cho, Song-Yean;Kim, Tai-Yun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.1
    • /
    • pp.34-43
    • /
    • 2000
  • Replicated data that is used for fault tolerant distributed system requires replica control protocol to maintain data consistency. The one of replica control protocols is quorum consensus method which accesses replicated data by getting majority approval. If site failure or communication link failure occurs and any one can't get quorum consensus, it degrades the availability of data managed by quorum consensus protocol. So it needs for ghost to replace the failed site. Because ghost is not full replica but process which has state information using meta data, it is important to simplify meta data. In order to maintain availability and simplify meta data, we propose a method to use cohort set as ghost's meta data. The proposed method makes it possible to organize meta data in 2N+logN bits and to have higher availability than quorum consensus only with cohort set and dynamic linear voting protocol. Using Markov model we calculate proposed method's availability to analyze availability and compare it with existing protocols.

  • PDF

Developing an Integrated Acupuncture Protocol for Treating Medial Tibial Stress Syndrome: A Delphi Consensus Study

  • Pradeep M.K. Nair;Gita Sharma;Deepika Singh;Mamta Jagwani;Anu Alias;Hassan Kodandarama Gurudatta;Radhakrishnan Shubha;Sreedhar Pulipatti;Nagaraja Nagajyothi;Anjali Sharma;Janak Bahadur Basnet;Kalpana Devi;Karuppaiah Muthukrishnan;Kajal Gupta
    • Journal of Acupuncture Research
    • /
    • v.41
    • /
    • pp.160-167
    • /
    • 2024
  • The present study employs the Delphi method to devise a consensus-based protocol for utilizing integrated acupuncture in treating medial tibial stress syndrome (MTSS). Twenty acupuncture experts contributed opinions across six key themes, including diagnosis, acupuncture points, additional Traditional Oriental Medicine modalities, treatment rationale, treatment duration/frequency, and integration of yoga/naturopathic therapies. Consensus, defined as a 70% agreement or higher, was reached on all themes, reflecting a collective acknowledgment of the necessity for a holistic approach to MTSS management. The final protocol includes six diagnostic criteria, six acupuncture points, one additional modality, two Traditional Oriental Medicine therapies, four treatment rationales, and six yoga/naturopathic therapies. The present comprehensive protocol offers valuable guidance for healthcare professionals seeking an integrated approach to MTSS management.

Consensus of Linear Multi-Agent Systems with an Arbitrary Network Delay (임의의 네트워크 지연을 갖는 선형 다개체시스템의 일치)

  • Lee, Sungryul
    • Journal of IKEEE
    • /
    • v.18 no.4
    • /
    • pp.517-522
    • /
    • 2014
  • This paper investigates the consensus problem for linear multi-agent systems with an arbitrary network delay. The sufficient conditions for a state consensus of linear multi-agent systems are provided by using linear matrix inequalities. Moreover, it is shown that under the proposed protocol, the consensus can be achieved even in the presence of an arbitrarily large network delay. Finally, an illustrative example is given in order to show the effectiveness of our design method.

Consensus of Leader-Follower Multi-Vehicle System

  • Zhao, Enjiao;Chao, Tao;Wang, Songyan;Yang, Ming
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.522-534
    • /
    • 2017
  • According to the characteristics of salvo attack for the multiple flight vehicles (MFV), the design of cooperative guidance law can be converted into the consensus problem of multi-vehicle system through the concept of multi-agent cooperative control. The flight vehicles can be divided into leader and followers depending on different functions, and the flight conditions of leader are independent of the ones of followers. The consensus problem of leader-follower multi-vehicle system is researched by graph theory, and the consensus protocol is also presented. Meanwhile, the finite time guidance law is designed for the flight vehicles via the finite time control method, and the system stability is also analyzed. Whereby, the guidance law can guarantee the line of sight (LOS) angular rates converge to zero in finite time, and hence the cooperative attack of the MFV can be realized. The effectiveness of the designed cooperative guidance method is validated through the simulation with a stationary target and a moving target, respectively.

MMOG User Participation Based Decentralized Consensus Scheme and Proof of Participation Analysis on the Bryllite Blockchain System

  • Yun, Jusik;Goh, Yunyeong;Chung, Jong-Moon;Kim, OkSeok;Shin, SangWoo;Choi, Jin;Kim, Yoora
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4093-4107
    • /
    • 2019
  • Proof of Work (PoW) based blockchains have limitations in throughput, time consumption, and energy efficiency. In these systems, a miner will consume significant time and resources to obtain a reward for contributing to the blockchain. To overcome these limitations, recent research on blockchains are focused on accelerating the speed, scalability, and enhancing the security level. By enhancing specific procedures of blockchain system, the level of data integrity supported by the blockchain can become more robust, and efficient. In this paper, a new blockchain consensus model based on the Bryllite Consensus Protocol (BCP) is proposed to support a hyper-connected massively multiplayer online game (MMOG) ecosystem. The BCP scheme enables users to participate directly in new consensus processes through a Proof of Participation (PoP) algorithm. In this model, the consensus algorithm has a simpler form while maintaining high security level. In addition, because the BCP scheme gives users an equal chance to make a contribution to the blockchain, rewards are distributed in an equal fashion, which motivates user participation. The analysis of the proposed scheme is applied to the Bryllite consortium blockchain system (homed in Hong Kong), which is a new blockchain network developed for international game industries, gamers, and game events.